Should You Repair or Replace a Roof? How to Decide

Roofs on buildings of all types are prone to damage, wear, deterioration, or leaks. When this happens, it leaves the owner wondering whether to address the problem through repair or replace the entire roof. How to decide? There are a number of key considerations:

MBCI Blog: Repair or Replace Your Roof?

What is the existing roof type?

Different roofing materials require different construction methods, and range in suitability for various types of building conditions. Low-slope roofs commonly feature either asphalt/bituminous roofing, polymer-based membranes or metal roofing. Each of these roofing types has its own procedures, materials and costs associated with identifying and repairing a leak. Steeper-sloped roofs can feature asphalt shingles or metal roof panels. These have various life-span expectations (metal lasts much longer, for example) and different ways to identify issues. Understanding the existing roofing type is fundamental in deciding on the best course of action.

Is the roof under warranty?

Regardless of the roofing type, there may be a warranty in effect that requires any inspection and repair work to be performed by someone certified or approved by the roofing manufacturer. Otherwise, undertaking an independent repair may render the warranty null and void. Hence, before anyone does any work on the roof, contact the manufacturer and confirm the applicability (or not) of a warranty. At this time, you can also evaluate any other options or conditions for a repair. The advantage of a warranty is that there should be little, if any, cost to the owner to repair the roof as long as the work is done according to the warranty terms. Without a warranty in effect, it’s entirely up to the owner to decide whether to repair or replace the roof.

How old is the roofing?

If the current owner is the original owner of the building, the roof age should be easy to determine. But what if this is a pre-owned building? It is often beneficial to determine how old the roofing is so you can understand any potential service-life trade-off. This will play directly into the cost-efficiency of a repair versus a replacement. If the roof is near the end of its service life, then a repair might not make sense if a full replacement is imminent anyway. If the roof is fairly new, then the question of how long a repair may last is important. Will it need to be repeated again before the roof is ready for replacement, and if so, at what cost?

Where is the actual location of the damage?

Is it really the roofing that’s a problem? Could it be something related—such as edge flashing or seals around a roof penetration (i.e. a chimney, pipe, or rooftop equipment connection)? If the damage is in isolated areas, a simple repair or flashing replacement may be the easiest solution. If the condition is more widespread, however, then a replacement may be more logical to address the larger area(s) affected.

 Is this building in a high-risk area for more damage?

Buildings prone to high winds or other severe weather need a more durable roofing system than areas where the weather is less dramatic. If the building is in a high-risk area, it might be reasonable to avoid relying on repairs and instead go for a full replacement.

Are there other inherent issues?

Sometimes, the roof covering isn’t the root of the problem. For example, Low-slope roofs often experience “ponding,” where water can sit in a slightly depressed or settled section of the roof. This can lead to deterioration and leakage over time which is not the fault of the roofing, but of the structure or insulation beneath it.

Similarly, steeper-slope roofs may be designed with a geometry or penetrations that prevent proper drainage and cause issues due to water backups. Or, perhaps ice build-up in winter is causing problems with the insulation in the roof system. Identifying the proper issue that is causing the problem will allow for selecting the best solution.

Deciding to repair or replace

Answering the basic questions above will likely reveal which approach—repair or replace—is most appropriate. Small areas of damage in areas in low-risk locations may best be served by simple repairs. If there are many years of roof life remaining or a warranty is in effect, this is especially true. However, missing or faulty components, worn or brittle membranes, or rusting metal panels may all be indications to replace the roofing entirely. This is even more important if the roof is quite old, out of warranty, or in a high-risk area.

In our next post, we’ll look at how metal roof systems help solve a variety of problems within different budgets. In the meantime, contact your local MBCI representative to learn more about roofing warranties and roofing systems for buildings.

Are Metal Panels An Ideal Low-Slope Roofing Material?

Many large, commercial, low-rise buildings often don’t benefit from steeply-sloped roofs the way residences and small commercial buildings might. This is because a steep roof slope would add unwanted height and unnecessary construction cost. Buildings like warehouses, retail stores, etc. are more appropriately built with low-slope roofing, commonly known as “flat roofs”. The National Roofing Contractors Association (NRCA) defines low-slope roofs as those with “a slope at or less than 3:12″. Anything steeper qualifies as a “high-slope roof”. With this in mind, let’s look at some key points to consider when designing and constructing a low-slope roof.

MBCI Low-Slope Roofing

 Low-Slope Roofing Materials

When it comes to selecting low-slope roofing products, there are generally three fundamental choices:

  • Asphalt/ Bituminuous Products: The traditional commercial roofing norm for many years, the use of asphalt/bituminous products has dwindled as newer, more appealing options have emerged.
  • Flexible Membrane Roofing: This roofing material can be made from a variety of types of plastic/polymer-based materials (commonly known as EPDM, TPO, PVC, etc.). Rolls of the chosen membrane are laid out on the roof structure and secured in place either with mechanical fasteners (screws with large washers) or with a continuous layer of adhesive.
  • Metal Roofing: Sometimes overlooked, metal roofing is suitable for different roof slopes. Many metal roofs that use standing-seam systems are rated for use with a pitch as low as ½:12.

When considering which type of roofing material to use for a building project, there are a number of significant differences that illustrate why metal roofing is often the ideal choice.

Engineered For Superior Performance

Standing-seam metal roofing is made specifically for use on low-slope roofs as it meets a number of performance requirements:

  • Water resistance: Precipitation doesn’t penetrate through metal or through the standing seams where the metal panels join together. This is why they can tolerate such low slopes, allowing the water to drain away slowly and predictably without leakage.
  • Rigidity: The rigid nature of metal means that there is less opportunity for ponding (standing water). This is not always the case with asphalt/bituminous or membrane roofing systems.
  • Drainage: Metal roofs carry water to the building’s edge toward gutters and downspouts that carry it away from the building. Other roofing systems rely on drainage piped inside the building. This takes up space and has the potential to leak water inside the building and cause damage.
  • Wind Resistance: Standardized uplift testing shows that metal roofing performs as well or better in extreme weather than mechanically-fastened or fully-adhered membrane systems.
  • Durability: The most cited advantage of metal roofing is its long-term strength and durability. Engineered design and use of high-quality coatings ensures a longer lifespan—50 years or more. In contrast, other roofing types typically feature lifespan ratings of 20 or 30 years.
  • Puncture Resistance: Low-slope metal roofing is more puncture-resistant than asphalt/bituminous or membrane roofing. This makes it better able to tolerate foot traffic, hail and other puncture-inducing hazards.
  • Construction/ Installation Ease: Metal roofing panels are custom-made to suit specific building sizes and end uses. This customization typically means it takes less time to place and install metal roofing in the field. Further, metal panels can tolerate a wide range of temperatures and weather conditions and still install and perform as intended. Low-slope roofs are also safer to walk on with less risk of slips, falls and other hazards.

Cost-Effectiveness

Using metal roofing on low-slope roofing systems can be cost effective in a number of ways:

  • Fewer labor hours as a result of the ease of installation saves money during construction.
  • Competitive material costs, particularly if the metal roofing is part of a total metal building package from a single manufacturer.
  • Minimal maintenance requirements and aversion to rusting, mold growth and decay that save the building owner money over time.

This all adds up to a very favorable life-cycle cost.

The performance, cost-effectiveness and life-cycle benefits of metal roofing panels make them a viable option for low-slope roofing systems. Manufacturers like MBCI can help you select the right metal roofing products and provide information and resources to help ensure proper installation.

View examples of low-slope metal roofing projects and contact your local MBCI representative to start your project today.

Understanding LEED for Green Metal Buildings

Designing and constructing sustainable buildings has become a mainstream expectation of most building owners. Whether for reduced energy costs, higher returns on investment, or as an organizational philosophy, “green” building solutions are in demand. Perhaps the best known and most often cited program to achieve these goals is the US Green Building Council’s (USGBC’s) LEED® rating system. While some may think that green buildings are more complicated and costly to build, that is not actually the case. This is especially true when metal building materials are used. In fact, metal buildings are an ideal and economical way to pursue sustainability goals and LEED certification. How? We break it down as follows:

LEED

The LEED® Program

The LEED program has been in use since 1998 and is now used worldwide. It is a voluntary, point-based rating system that allows for independent review and certification at different levels. These levels include Certified (40-49 points), Silver (50-59 points), Gold (60-79 points), or Platinum (80 or more points). Since it allows for choices in which points are pursued, innovation and flexibility are entirely possible as long as specific performance criteria are met. It also encourages collaborative and integrative design, construction and operation of the building.

Points are organized into six basic categories, many of which can be addressed through metal building design and construction, as summarized below.

  • Location and Transportation: Metal buildings can be manufactured and delivered to virtually any location. That means they can support LEED criteria for being located near neighborhoods with diverse uses, available mass transit, bicycle trails, or other sustainable amenities. Metal building parking areas can also be designed to promote sustainable practices for green vehicles and reduced pavement. This all contributes toward obtaining LEED eligibility.
  • Sustainable Sites: Adding a building to any site will certainly impact the natural environment already there. Delivering portions of a pre-engineered metal building package in a sequence to arrive as needed means that the staging area on-site can be minimized—reducing site impacts. Additionally, using a “cool metal roof” has been shown to reduce “heat island” effects on the surrounding site and also qualify for LEED.
  • Water Efficiency: Any design that reduces or eliminates the need for irrigation of plantings and other outdoor water uses is preferred. Incorporating metal roofing with gutters and downspouts, as is commonly done on metal buildings, allows opportunities to capture rainwater for irrigation or other uses. It also helps control water run-off from the roof and assists with good storm water control.
  • Energy and Atmosphere: Metal buildings can truly shine in this category. Creating a well-insulated and air-sealed building enclosure is the most important and cost-effective step in creating an energy conserving building. A variety of insulation methods for metal building roof and wall systems are used to achieve this. Typically, metal building construction uses one or more layers of fiberglass insulation and liners combined with sealant and air barriers. Alternatively, insulated metal panels (IMPs) provide all of these layers in a single manufactured sandwich panel with impressive performance. Windows, skylights and translucent roof panels can provide natural daylight, allowing electric lighting to be dimmed or turned off. For buildings seeking to generate their own electricity,  standing-seam metal roofing provides an ideal opportunity for the simplified installation of solar photovoltaic (PV) systems. Metal roofs generally provide a sustainable service life in excess of 40 years. This means they can outlast the PV array, thus avoiding costly roof replacements during most PV array lifespans.
  • Materials and Resources: Life Cycle Assessments (LCAs) are recognized by LEED as the most effective means to holistically assess the impacts that materials and processes have on the environment and on people. Fortunately, the Metal Building Manufacturer’s Association (MBMA) has collaborated with the Athena Sustainable Materials Institute and UL Environment to develop an industry-wide life cycle assessment report. There is also an Athena Impact Estimator that can help with providing LEED documentation. Metal buildings support exceptional environmental performance through the significant use of recycled steel and the reduced need for energy intensive concrete due to lighter weight buildings.
  • Indoor Environmental Quality: Most people spend much more time indoors than outside, which impacts human health. Therefore, LEED promotes or requires using materials that don’t contain or emit harmful substances. It also promotes design options for natural daylight, exterior views and acoustical control to promote psychological and emotional well-being. Metal buildings are routinely designed to readily incorporate components that help achieve these indoor qualities.

In addition, some LEED points are available for demonstrating innovation and addressing priorities within a geographic region.

Considering the qualities listed above, metal buildings clearly provide a prime opportunity to pursue LEED certification at any level. To find out more about the LEED rating system, visit https://new.usgbc.org/leed. To find out more about successfully designing and constructing metal buildings pursuing LEED certification, contact your local MBCI representative.

Why Upgrade a Roof to Metal Panels?

Have you considered using metal panels in building and roofing upgrades? Metal roofing panels from MBCI offer significant advantages over traditional roofing material, including the ability to be integrated with the existing structural system. For buildings that need to comply with strict code requirements, our huge selection of metal roofing can meet your needs.

Save Money with Metal Roofing

Using metal instead of asphalt shingles for roofing provides several cost-saving benefits, including:

  • 60-year lifespan: The strength and durability of metal is unparalleled compared to traditional asphalt shingles, and weathers the elements for a much longer period of time.
  • Sustainability: Our cool roof coatings are extremely energy-efficient, saving you cost associated with heating and cooling your building. With strict requirements in place for buildings today, reducing energy and maintenance costs is top-of-mind, and metal roofing is a simple solution that offers both. MBCI also works with LEED project documentation and has EPDs using LCA results for core panels.
  • Higher Quality Material: From insulated to standing seam and exposed fastening roof panels, our selection of panels are available in gauges ranging from 22 to 29, with a variety of finishes and coatings to ensure your metal roof stands the test of time.
  • Extensive Warranties: MBCI’s signature panels each come with their own unique warranty, with coverage for features including film integrity, chalk and fade, and more depending on the product.

It is important to note that when working with older buildings, there is a possibility of degradation of the subsurface as well as pre-existing structural issues such as overloading the structure.

MBCI's metal roofing panels are a durable and energy-efficient alternative to standard roofing products.
MBCI’s metal roofing panels are a durable and energy-efficient alternative to standard roofing products.

Panels & Systems for Every Application

  • Standing Seam Panels: Commonly used for a variety of commercial, residential, and recreational applications, these are some of the most durable and versatile systems available. We offer everything from mechanically field-seamed panels to curved and snap-together options. No matter what your building is used for, these systems withstand the elements and have fire and impact resistance ratings.
  • Lightweight Panels: MBCI’s product line features lightweight panels that can be used as framing and sheeting materials. For example, the BattenLok® HS is a high strength standing seam roof systems that can be installed directly over the purlins or bar joints. The type of metal paneling chosen for your roofing systems allows for additional customization by being able to choose your color with our extensive color chart. The experts at MBCI have years of experience matching the retrofit roof panels to the new roof membrane.
  • Exposed Fastening: With 9 different styles to choose from, MBCI’s vast selection of exposed fastener roof panels are sure to exceed your expectations. Cost-effective and easy to install, these panels are often used in commercial and agricultural buildings, and are designed for both vertical and horizontal installation.
  • Retrofit Systems: Selecting the correct roofing system is critical in the retrofitting process. MBCI’s NuRoof® retrofit system has the capability to “stick-frame” the current supporting structure. The new retrofit system allows for redistribution of loads while increasing the energy-efficiency of the building. If you prefer installing new panels over existing roofing, the Retro-R® Panel can enable you to skip the removal of the existing roof entirely. This is a great option for saving time and cost related to installation, and can keep your operation up and running with no downtime. The Retro-R® Panel’s Drip Stop membrane prevents rust from old roofs from interfering with new panels, providing a new look with a long life span. With availability in both 26 and 29 gauge Galvalume Plus® and 200 color options, the Retro-R® roofing system is a great option for retrofitting.

To find out more about which metal roofing panel is ideal for your new project or existing building, contact your local MBCI representative.

 

Sustainability and Metal Buildings

The movement of the construction industry to create buildings that are more sustainable throughout their life cycle continues to be a fundamental part of a well-designed and well-constructed building. This comes from the building owners who are expecting it, designers who are more skilled at achieving it, construction companies who have incorporated it into their workflows, and manufacturers who have invested significantly in it. These sustainability efforts include the design, fabrication, and construction of pre-engineered metal buildings across the country.

A number of different certification programs (LEED, Green Globes, The Living Challenge, etc.) promote and can independently certify buildings as meeting different levels of “green” or “sustainable” designs. And the recently released International Green Construction Code has been adopted by a number of localities to codify green design and construction. While the details of these programs vary, they all address some fundamental aspects of buildings, and all apply to metal buildings.

Building Site Impacts:

Shop fabrication of metal buildings means the onsite work can be focused to stay close to the building footprint. Once built, the roofs of metal buildings can further reduce site impacts. For example, metal roofs provide an excellent opportunity to collect rainwater so it can be used for non-potable purposes, such as landscaping or toilet flushing. Further, by specifying metal roofing with a high Solar Reflectance Index (SRI) value, the roofing remains cooler than a dark-colored roof and reduces the so-called “heat island effect” surrounding the building.

Reduces Energy Usage:

Metal buildings can also be designed and constructed to create an energy-efficient building enclosure. The Metal Building Manufacturers Association (MBMA) publishes an Energy Design Guide for Metal Building Systems, available at www.mbmamanual.com, which can help in the process. As MBMA points out, builders can “select the best balance of high-performance roof and wall insulation (including fully insulated metal panels), windows and doors, and foundation insulation that works best and saves the most energy and money when considering all the project requirements.” A metal building with a sloped roof can also be the ideal base to support solar panels that can provide an onsite source of renewable energy for the building to capitalize on.

Responsible Material Usage:

The construction industry has become attuned to looking at the impacts of materials over their full life cycle, and this includes the metal building industry. The MBMA has taken the lead on preparing an industry-wide Life Cycle Assessment (LCA) (http://www.mbma.com/Life_Cycle.asp) that includes primary structural steel frames and secondary structural steel (purlins and girts), along with roof and wall products used in metal buildings. MBMA has also prepared Environmental Product Declarations (EPDs) based on the LCA and industry-wide product category rules. By using this information, designers, building owners, and constructors can determine the environmental impacts of metal buildings from the extraction of raw materials through manufacturing and preparation to ship to the construction site (“cradle to gate”). The fact that steel products of all types contain a significant percentage of recycled material, and can be again recycled at the end of the service life of the building, helps present a more sustainable picture of steel than does some other building products. Further, the shop fabrication of components helps eliminate construction waste on the job site.

Sustainability
At MBCI, we take LEED project documentation seriously and issue only project-specific documentation for USGBC submittals, so please contact your sales representative for LEED documentation on existing contracts.

Indoor Environmental Quality:

The interior spaces of buildings are generally considered sustainable when they protect the health and well-being of the people who use the building. In the regard, metal buildings provide some advantages over others. First, many of the metal building components can be pre-finished before ever arriving at the site. This means that onsite finishing, which can release harmful volatile organic compounds (VOCs) or other substances into the air, are notably reduced or eliminated a the building location. Further, the structural flexibility offered by steel construction means that windows, doors, and skylights can be appropriately spread throughout a building to provide natural daylight and exterior views, which have been shown to have great benefits to the people who work in, visit, or otherwise use the buildings.

Overall, it is the full interaction of all parts of a building, including the owners and users of a facility, that will determine the final sustainability of any building. Nonetheless, it is clear that metal buildings can be a great place to start on the sustainability path. To find out more about metal products and systems that can help your next building be more sustainable, contact your local MBCI representative.

Planning for Metal Roofing Retrofits

The decision to retrofit an existing commercial roof with a new metal one is usually based on the very real appeal of creating a long-term (50-60 years) roofing solution, achieving better energy efficiency, creating better aesthetics, or all of the above. Prior blog posts discussed these benefits in more detail and talked about different types of metal roofing retrofits. Here, we will focus on where to start in terms of planning to undertake a roofing retrofit based on covering a membrane roof with a metal-framed, low-slope, metal roofing system.

Existing Building Assessment

A successful retrofit is based on the new metal roof system working with the existing building structure and local conditions. Each of the following should be looked at first when starting the planning and design process:

  • Existing Roof Geometry: The shape (length and width) of an existing roof is important to determine the square footage of the roof, but so are the actual dimensions, since those can impact the height of the new metal roofing. The minimum recommended slope for new roofs is between ¼:12 and 3:12 , depending upon the roof system chosen for the new roof. Existing roof details such as overhangs, parapets, and the existing roof slope itself all need to be documented in order to determine how best to address them with the retrofit system.
  • Existing Roof Type: In many cases, the existing roofing does not need to be removed, but there may be ballast such as stone or other materials that are no longer needed. Oftentimes, the removal of this ballast will compensate for the additional weight of the new roof and framing system. The materials of the existing roof may also pose compatibility issues with new materials, so they should be documented to plan accordingly.
  • Existing Roof Substrate: Under the existing roofing, some type of substrate material is holding it up. It may be rigid insulation resting on a metal, wood, or concrete deck, or it may be an uninsulated substrate that has insulation below it. The specifics here need to be established, since the new metal framing will need to connect through this material. If insulation is in fact part of the substrate, then its effectiveness should be determined—has it gotten wet and been compromised, or is it still in good usable condition? Either way, how much is there?
  • Existing Roof Structure: The structural system of the building includes framing or other components that support the roof. This is what the new metal framing will anchor to and transfer structural loads to. Hence, the specifics in terms of type (steel joists, concrete beams, wood joists, etc.), the size, and the spacing are critical. Further, the carrying capacity of this system should be assessed and analyzed by a structural engineer, since the retrofit system will add 2 to 4 pounds per square foot of dead load to the roof structure. Further, this weight, plus any live loads from the roof, will typically not be distributed uniformly, but in a series of point loads. Therefore, the engineered capacity of the existing structure needs to be known to determine if any structural enhancements are needed.
  • Existing Roof Equipment: Many commercial buildings use the roof to locate mechanical, electrical, or elevator equipment. In some cases, that equipment can be moved to the ground or elsewhere, but in other cases it can’t, or would be too costly to consider. Hence the details, location, and height of such equipment needs to be known so a determination can be made on whether it can be covered and enclosed in the “attic” of the retrofit system, or if it will need to be raised to the top of the new roof.

New Retrofit Roofing Goals

With an assessment of the existing conditions in hand, the focus now becomes identifying the primary objectives of the new roof. These should be clearly articulated so the final design can address and include each of them:

  • Appearance: What is being sought in terms of shape, height, visibility, color, improved curb appeal, or other visual considerations?
  • Performance: What is the new roof being asked to address related to operations or performance issues? Common elements could be improved drainage, less maintenance, greater longevity, or more resistance to damage.
  • Energy Efficiency: Replacing a roof is the ideal time to improve energy efficiency in a building by adding new or more insulation. This could be done simply to meet current energy code requirements or to contribute to an overall energy-use reduction project at the building. In some cases, the new roofing system could enhance the ability to include energy generation, such as solar panels mounted to the new roofing system.

With proper planning and goal setting, a metal retrofit system can meet or exceed all expectations. This was the case recently at a water treatment facility in Dallas, Texas. Here is a photo of the existing built-up roof that was experiencing problems and needed replacement. It was assessed, analyzed and determined to be an excellent candidate for a retrofit metal roofing system.

Retrofits

 

Metal Roofing Retrofits
Here is a photo of the light-gauge metal framing installed to create the new low-slope planes and transfer loading to the existing building structure.

 

Planning for Retrofits
And, finally, here is the completed metal roofing, which looks better and is expected to perform better than the original roofing.

 

To learn more about MBCI retrofit metal roofing systems and how they might work on a building you are involved with, visit http://www.mbci.com/products/retrofit-products/.

Benefits of Roofing Retrofits with Metal Roofing Systems

Many commercial buildings, and even some residential ones, have low slope or “flat” roofs that can be problematic to maintain. They typically rely on a membrane of some sort that in and of itself is waterproof, but every seam, penetration, flashing, and other detail is a potential leak if not installed and maintained properly. Further, the subsurface that the membrane sits on determines the actual slope to roof drains so if that is compromised, then standing water can sit on the roof and cause issues. Even the roof drains are a concern if they get clogged with debris or leaves and cause water to back up and stagnate on roofs.

Given the potential difficulties, and the frequency of replacement that is often needed for flat roofs (average of 20 years), it is no surprise that many facility managers or owners look to retrofit their buildings with sloped metal roofs wherever the size and geometry are conducive to it. In doing so they recognize the many benefits obtained which can include any or all of the following:

Reduced Maintenance with Metal Roofing

A complete metal roof system (e.g. metal framing, metal roofing, insulation, and ventilation) can be designed and installed to require minimal maintenance. That means not only fewer potential problems, but reduced operating costs over the course of many years.

Increased Roof Lifespan

Metal roofing is recognized by industry experts for having a very long lifespan even under challenging weather conditions. It is not uncommon for a metal roof system to last 60 or more years compared to a 20-year average for flat membrane roofs. If Galvalume® coated steel is used (i.e., zinc/aluminum coating licensed to roofing manufacturers), the roof lifespan can be expected to last the full service life of the building, according to studies done on standing seam roofs by the Zinc-Aluminum Coaters Association and the Metal Construction Association (MCA). Long-lasting roofing means there is only one installation to provide and pay for, not multiple ones over the life of the building.

Retrofit
Tum-A-Lum Lumber featuring Retro-R® Metal Panels

Improved Building Energy Efficiency

Retrofitting with new insulated metal roofing systems is an excellent solution to high energy consumption and associated costs in a building. Retrofit systems can be designed to work over existing flat roofs or even over older sloped metal roofs to upgrade a building to meet or exceed current energy code requirements. Such systems add insulation between the old and new roof reducing heat gain in summer and heat loss in winter. The metal roofing can also be finished to reflect the heat of the sun away, achieving  higher solar reflection index and reducing cooling costs.

Greater Sustainability

In addition to energy efficiency, metal roofing systems can be made from recycled steel and then be re-used or recycled at the end of its service life. This capability helps reduce the amount of material headed to landfills and can contribute to points in the LEED green building rating system, among others.

Improved Aesthetics

Sloped metal roofs can be used as a significant design feature on many low rise and mid rise buildings. The range of colors and textures provides architects and other design professionals a full palette of options.

Increased Property Value

Curb appeal and long term performance are common contributers when a property is being assessed for value. A retrofit metal roofing system can certainly help in this regard.

Overall, there are many reasons for choosing a retrofit system for an existing building. Whether to replace a leaking roof, correct the current geometry, meet new regulation or code requirements, improve the aesthetics, or increase the energy efficiency of a building, all of the benefits above can be realized. To learn more about MBCI retrofit metal roofing systems and how they might work on a building you are involved in, visit www.mbci.com/products/retrofit-products.

Reducing Peak Demand Costs with Cool Metal Roofs

Among the many benefits offered by cool roofs—including a decrease in urban heat island effect or increased roof system longevity—perhaps the most significant is a reduction in peak demand energy usage which directly affects building expenses.

Peak demand is the highest point in the day at which a building draws electrical consumption. A facility’s monthly utility rates are largely determined by the power usage level at this time, so anything that can be done to drive usage down will significantly reduce utility costs. As evidenced by their test values, cool roofs are an effective way to decrease air conditioning loads during peak demand times.

Cool roof values are expressed in terms of solar reflectance and thermal emissivity. The combination of these values is used to determine how hot a surface will become by its ability to reflect solar energy and radiate heat away from itself. Cool roofsare capable of reflecting solar heat away from a building by more than 70 percent. In fact, the U.S. Environmental Protection Agency estimates that ENERGY STAR® qualified roofing products can lower roof surface temperatures by up to 50°F.

According to Jeff Steuben, executive director, and Carolyn Richter, communications manager, Cool Roof Rating Council (CRRC), in a recent Florida Roofing article, “Building occupants can experience improved comfort as compared to a conventional dark roof, as the building’s interior is subject to less thermal flux and stays cooler during warm seasons,” and, “Reduced indoor temperatures lead to energy savings from reduced cooling energy loads.”

Along these lines, contractors can also access a CRRC-provided listing of cool roof rebates, codes and voluntary cool roof programs at: www.coolroofs.org/resources/rebates-and-codes.

Cool Roofing Longevity

In addition to energy efficiency, cool metal roofs are known for extended durability and longevity, with most products offering a 40-year finish warranty.

In fact, a well-noted extensive study, Natural Exposure Testing in California, conducted by the Oak Ridge National Laboratory, found that pre-painted metal roofing maintained higher levels of reflectance, over a three-year period, due to its ability to shed particulate matter, as compared to conventional roofing materials. Further, pre-painted metal roofing has been found to retain 95 percent of its initial solar reflectance over this same three-year period.
Increasing performance and energy savings, solar reflective pigments in cool metal roofs offer higher total solar reflectance and thermal emittance, even in darker colors. With cool roof technology, the ability for the roof to store heat and radiate that heat into the building after sundown is dramatically reduced.

Cool Roofs
Heitmann Residence featuring a Cool Metal Roof

Cool metal roofs are proven to deliver environmental and performance benefits, of which the most significant to building owners is their contribution to the bottom line. Although savings will vary based upon geography, materials and insulation, the U.S. Environmental Protection Agency estimates that reflective roofs can save up to 40 percent of a building’s cooling energy costs.

When utilizing the U.S. Department of Energy’s Cool Roof Peak Calculator, contractors will discover that the total value of energy savings offered by a cool roof averages more than $1,000 annually in most climate zones for a typical commercial building. Furthermore, this applies to both cool roofing installed over both existing roof insulation and new insulation.

Proven Strategy

As established by documented study and significant heat build-up reduction levels, cool roofs are a proven strategy for supporting longer lasting roofs, reducing both utility costs and decreasing a building’s environmental footprint as Steuben and Richter conclude, “cool roofs are one of the most effective ways to obtain energy savings and environmental rewards through building envelope design and re-roofing projects.”

Beauty and Braun: The Benefits of Mixing Insulated Metal Panels with Single-Skin Panels in Commercial Design

Commercial projects aren’t one size fits all. By bringing in metal panel products to suit the individual need, designers and architects can provide custom solutions for a variety of applications. Single-skin metal panels and insulated metal panels (IMPs), if used correctly, can together add both aesthetic and functional value to your projects.

While IMPs can provide superior performance with regard to water control, air control, vapor control and thermal control, you may sometimes find your project requires—from an aesthetic perspective—the greater range of choices available in single-skin profiles. Let’s spend a little time looking at some of the reasons behind the growing trend of specifying a combination of insulated metal and single-skin panels.

Benefits of Insulated Metal Panels

Insulated metal panels are lightweight, composite exterior wall and roof panels that have metal skins and an insulating foam core. Their much-touted benefits include:

  • Superior insulating properties
  • Excellent spanning capabilities
  • Insulation and cladding all in one, which often equates to a shorter installation time and cost savings

Benefits of Single Skin

Single-skin panels, on the other hand, with their expansive array of colors, textures and profiles, may have more sophisticated aesthetics. They can be used on their own or in combination with IMPs. It should be noted, too, that single-skin panels can—in their own right (as long as the necessary insulation is incorporated) —satisfy technical and code requirements, depending on the application.

Beyond aesthetics, when it comes to design options, single-skin products offer a wide range of metal roof systems, including standing seam roof panel, curved, and even through-fastened systems. As for wall systems, those may include concealed fastened panels, interior wall and liner panels, and even canopies and soffits, not to mention exposed fastened systems. Therefore, you have a wide range of not only aesthetics options but VE (Value Engineering) options as well.

Why Mix?

So, in what situations might the designer or architect choose to combine the two panel types? Let’s examine a couple of specific scenarios related to the automotive or self-storage worlds as a means of illustration. In both of these types of applications, it is not uncommon for the designer to recognize the importance of wanting to keep the “look” of the building consistent with branding or to bring in other design elements.

Coalville Wastewater Treatment Facility
The Coalville Wastewater Treatment Facility in Logan, Utah combines the insulated CFR panel with the single-skin Artison L-12 panel.

Single-skin panels can be used as a rain screen system in the front of the building or over the office area, and would provide the greater number of design options. In the rest of the building, designers can take advantage of the strength, durability and insulation benefits of IMPs. Although you could use one or the other for these examples, the advantage of mixing the two would be achieving a certain look afforded by the profiles of single-skin, while still adhering to stringent building codes and reducing installation time—which is the practical part of using IMPs.

Focus on HPCI IMP Systems

One great example of a current trend we’re seeing at MBCI is the use of the HPCI-barrier IMP system, along with single-skin panels. The High Performance Continuous Insulation (HPCI) system is a single system that is a practical and effective replacement for the numerous barrier components found in traditional building envelopes.

HPCI Insulated Metal Panels
The HPCI Insulated Metal Panel is quick and easy to install and provides an economical solution to conventional air, water, thermal and vapor control without sacrificing thermal efficiency.

A big benefit to using the HPCI system is that the barrier wall is already in place. In terms of schedule, the HPCI barrier system is typically installed by contractors who are also installing the single-skin system, eliminating the need for multiple work crews, and thereby minimizing construction debris and reducing the likelihood of improper installation. With a general lead time of four to six weeks for the HPCI and a week or two for the single-skin, the installation goes fairly quickly. Therefore, it appeals as the best of all worlds—a single system meeting air, water, thermal and vapor codes (ex.: IBC 2016, NSTA fire standards) plus the design flexibility of a single-skin rain screen product. (Note: The HPCI panel must be separated from the interior of the building by an approved thermal barrier of 0.5″ (12.7mm) gypsum wallboard to meet IBC requirements.)

Bottom line, HPCI design features and benefits include the following:

• Provides air, water, thermal and vapor barrier in one step
• Allows you to use multiple façade options while maintaining thermal efficiency
• Easy and fast installation, with reduced construction and labor costs

Conclusion

As designers, architects and owners are getting smarter about a “fewer steps, smarter dollars” concept and an increased awareness of applicable codes and standards, not to mention lifecycle costs, the trend towards maximizing the strengths of available systems will continue to grow. Whether the right choice is an IMP system, single-skin or some combination, the possibilities are virtually endless.

Nice Curves! Stunning Architecture with Curved Roofing and Walls

Breaking away from simpler panels, more and more architects are experimenting with arched and curved metal roofing and wall panels to upgrade their designs. This enables designers to incorporate exciting elements like concave and convex curving, not as feasible with other cladding materials.

Combined with unique angles, increased edge finishing options, appealing gutter options and greater compatibility with shingle types, architects now have access to a greater assortment of mix-and-match options.

For example, at Owens Community College in Findlay, Ohio, a regal red, double-curved canopy crowns the curtainwall with 15,500 square feet of 22-gauge curved metal roof panels. Designed by Rooney Clinger Murray Architects, the structural roofing panel system, fabricated by MBCI, is ASTM tested for air infiltration and water penetration, and incorporates a 2-inch tall standing seam that was field seamed during the installation process. The contractor, Charles Construction Services, won the American General Contractors (AGC) Build Ohio Award for “New Construction Under $10 Million.”

Owens Community College
For Owens Community College, the Curved BattenLok® metal panels in red accentuate the arch of the campus, making it the focal point of the building.

Another noteworthy curved design example is the Central Los Angeles Area High School #9, designed by HMC Architects. “Metal enabled us to clad buildings of different geometries, including curved geometries, in one material, while also giving them a special appearance,” reported Kerstin Kohl, spokesperson for the project’s design architect, COOP HIMMELB(L)AU, in a Metal Construction Association case study, Steeling Art for Students.

Using CAD and BIM for Curved Metal Panels

For designing and fine-tuning curved metal creations, the latest CAD and BIM features are key tools for architects.

In creating the “geometry that has been freed from the relentlessness of the orthogonal layout,” as described by Mark Dewalt, AIA, principal at Valerio Dewalt Train, in a recent article in Metal Architecture magazine, New Trends in Metal Architecture, designers are using CAD in shop drawings to support unique façade fabrication.

“The use of computer design to warp and twist and perforate will give metal greater longevity, added Kevin Marshall, AIA, LEED AP BD+C, associate architect, Integrated Design Solutions.

Similarly, BIM software is further supporting enhanced compatibility with metal roof and wall designs with newer features such as automated light gauge steel wall framing work and the ability to more easily configure supporting structures, openings, complex L or T connections and service hole positions while providing photorealistic renderings so that the client can see exactly how their building will look once built.

West Haven City Hall
West Haven City Hall combines MBCI’s Curved BattenLok® in Copper Metallic with Artisan® Series and Flat Sheet.

Ensuring a Tight Building Enclosure with Curves

As with any roofing type, designing and installing a tight building enclosure for curved roofing and walls is essential for delivering a high performing building.

For starters, architects must choose an appropriate vapor retarder, especially in cooler climates and interior relative humidity levels of 45 percent or greater. Also, buildings with high humidity interiors and construction elements that may release moisture after the roof is installed–such as interior concrete and masonry, plaster finishes and fuel-burning heater– require special considerations when choosing vapor retarders.

With utility clips, some curved panels will lay tight to the wood deck, but if tin tabs are used to attach the moisture barrier to the wood deck, then they will need to be covered to prevent the tabs from rusting the back side of the panels. Similarly, plastic washers may not be the best option as they run the risk of impacting the panels, resulting in undesired aesthetics. Rather, peel and stick membranes are a preferred underlayment because they eliminate the potential of underlayment fasteners penetrating or dimpling the panels.

A Savvy Look for Design

Whether it’s wavy, circular or some other exciting soft geometric shape, curved metal roofing and walls open up all kinds of new design possibilities. Out of the box, literally, architects are actively producing exciting, eye-catching creations with these welcomed capabilities.

Find a sales representative