Sealing the Deal: The Importance of Properly Sealing the Building Envelope Using IMPs and Single-Skin Panels

The primary purpose of a building’s envelope (roof and walls) is to protect the building’s interior spaces from the exterior environment and provide the desired exterior aesthetics. Whether choosing insulated metal panels (IMPs) for their superior performance or, instead, looking to the wide range of aesthetic choices available with single-skin panels—or some combination of the two—the common goal must always be to protect the building from the potential ravages of water, air, vapor, and thermal/heat. By ensuring proper installation of metal panels and, thereby, properly sealing the building envelope, problems can be mitigated, efficiencies maximized, and the integrity of the building protected.

Here, we’ll briefly consider the benefits of each panel, and some key considerations relative to their sealant needs and capabilities.

Insulated Metal Panels (IMPs)

IMPs are lightweight, composite exterior wall and roof panels that have metal skins and an insulating foam core. They have superior insulating properties, excellent spanning capabilities, and shorter installation time and cost savings due to the all-in-one insulation and cladding. In effect, IMPs serve as an all-in-one air and water barrier, and are an excellent option for retrofits and new construction. With their continuous insulation, roof and wall IMPs provide performance and durability, as well as many aesthetic benefits.

IMPs offer excellent R-value and improve energy efficiency to the building envelope.
IMPs offer excellent R-value and improve energy efficiency to the building envelope.

Generally speaking, because of the nature of the joinery, it is easier to get a good seal in place with IMPs given their relative simplicity (i.e., putting the two pieces together with the sealant). They require great attention, though, in terms of air and vapor sealing—aspects largely controlled by the installers on a given project. As an example, vapor sealing in cold climates or applications is critical to the overall soundness of a building. Consider the damage a building could incur if moisture seeps into a panel and becomes trapped; it if freezes, it could push panels out of alignment. This would result in not just an unattractive aesthetic, but a performance failure as well. In order to be effective, all sealant and caulking must be fully continuous.

Single-Skin Panels

Single-skin panels, alternatively, offer the advantage of an expansive array of colors, textures and profiles. They are also thought to have more “sophisticated” aesthetics than IMPs. Single-skin panels are available in both concealed fastener and exposed fastener varieties, and are part of an assembly. They can be used alone or in combination with IMPs, and as long as the needed insulation is incorporated, single-skin panels can meet technical and code requirements, depending on the application. Single-skin products offer a wide range of metal roof systems and wall systems as well.

Getting the proper seal on single-skin panels may require extra sealants or closures, and have more parts and pieces that have to come together to create the seal. However, when properly installed and sealed, they can provide excellent performance in their own right. Some key caveats include ensuring panel laps are properly sealed with either tape or gun butyl sealants, and carefully inspecting air and water barriers for proper installation as well as penetrations through the wall for sealing/fire caulking prior to panel.

In most cases, following the details for the most common conditions will give you a successful and high-performing outcome.

Regardless of the type of metal panel used, taking the time and effort to ensure the sealing and caulking details are properly handled, metal buildings can protect the built environment and provide long-lasting quality and performance.

Ventilated Metal Roofing Systems

Metal roofing is commonly installed on residential or light commercial buildings, where longevity and aesthetics are a priority. When those buildings are wood framed or use roof sheathing, the desired results can still be achieved, as long as some basic guidelines are followed. One of the most fundamental items to address is making sure that the roof system is properly ventilated in a manner that works with the rest of the building construction. Let’s take a look at the two most common means to achieve that.

Ventilated Attic:

Conventional residential roof construction typically involves a trussed or rafted roof system with insulation installed along the ceiling line and a ventilated attic above it. The premise here is that the ceiling is sealed tightly to prevent any conditioned air from entering the attic, but if it does, then any moisture in that air is ventilated out of the attic, preventing any build up and potential damage.

The most effective way to ventilate an attic is with continuous vents along the soffits and a corresponding continuous vent along the ridge. The International Residential Code (IRC) recognizes this approach and provides the formulas for determining the proper amount of net free vent area (NFVA) required for the total roof assembly. It then goes on to state that 50 percent should be split between the ridge vent and 50 percent along the total soffit area. Some building experts suggest, however, that 60 percent along the ridge and 40 percent along the soffits will provide a slight pressurization of the attic and help with the desired proper venting flow.

Either way, the overall intent is to create a situation where outdoor air is moving freely in through the soffit vents and up through the ridge vent. The continuously moving air then helps keep the roof sheathing, and the roof cooler than it would be when compared to sitting in the sun without the ventilation – on the order of at least 2-3 degrees Fahrenheit.

Ventilated Roofing:

Not every roof system is built with an attic and insulated ceilings. Sometimes, the roof deck defines the building enclosure either in the form of an upper floor ceiling or as a cathedral-style ceiling and roof system. In some of these cases, insulation may be installed between the roof framing which still requires ventilation between the roof sheathing and the insulation on the order of an inch minimum of air space (2 inches preferred), as in an attic.

In other cases, the insulation may be rigid foam that is installed above the roof deck or sheathing. Here, the insulation needs to be thick enough to keep the exposed ceiling warm and prevent any condensation inside the structure. The International Energy Conservation Code prescribes the minimum R-values of insulation based on climate zones, and typically, the required amounts for energy control also assure condensation control.

Ventilated
Above sheathing ventilation (ASV) is achieved by having continuous air flow between the roof sheathing and the metal panel system.

Nonetheless, if a layer of wood sheathing is placed directly on the insulation and then the metal roofing placed directly on top of that, the metal roofing will tend to get warmer in the sun than in a ventilated condition. Therefore, metal roofing manufacturers often recommend providing an air gap between the metal roofing and the sheathing. This is achieved with furring strips ran vertically to assure air flow, and then run horizontally to support the roof. The spacing and details of these supports should be determined by a structural engineer who can perform the needed analysis and calculations, taking into account the panel strength and imposed loads from snow, wind, etc.

Is this approach effective? A series of studies undertaken at Oak Ridge National Laboratory and sponsored by the Metal Construction Association has determined the answer is yes. These studies used a common asphalt-shingled roof without any ventilation above the sheathing as the control case. Then different versions of a metal roofing system with ventilation between the sheathing and the roofing were tested and compared to each other and the asphalt-shingled roof. The results found that “all test roofs were highly effective in reducing the heat flows through the roof and ceiling, and in reducing the diurnal attic temperature fluctuations.” (References below)

Clearly, paying attention to ventilating the roofing system, regardless of the type of construction, can make a difference in the overall performance of a roof. To find out more about ventilated roofing systems for a current or upcoming project, contact your local MBCI representative.

 

References:

Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data – Phase Three Final Report

Authors: Kaushik Biswas, Phillip Childs, Jerald Atchley

Volume 1 Published: May, 2014 ORNL/TM-2014/141

Volume 2 Published: January 2015 ORNL/TM-2014/346

Prepared by OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6283

Managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR227

Planning for Metal Roofing Retrofits

The decision to retrofit an existing commercial roof with a new metal one is usually based on the very real appeal of creating a long-term (50-60 years) roofing solution, achieving better energy efficiency, creating better aesthetics, or all of the above. Prior blog posts discussed these benefits in more detail and talked about different types of metal roofing retrofits. Here, we will focus on where to start in terms of planning to undertake a roofing retrofit based on covering a membrane roof with a metal-framed, low-slope, metal roofing system.

Existing Building Assessment

A successful retrofit is based on the new metal roof system working with the existing building structure and local conditions. Each of the following should be looked at first when starting the planning and design process:

  • Existing Roof Geometry: The shape (length and width) of an existing roof is important to determine the square footage of the roof, but so are the actual dimensions, since those can impact the height of the new metal roofing. The minimum recommended slope for new roofs is between ¼:12 and 3:12 , depending upon the roof system chosen for the new roof. Existing roof details such as overhangs, parapets, and the existing roof slope itself all need to be documented in order to determine how best to address them with the retrofit system.
  • Existing Roof Type: In many cases, the existing roofing does not need to be removed, but there may be ballast such as stone or other materials that are no longer needed. Oftentimes, the removal of this ballast will compensate for the additional weight of the new roof and framing system. The materials of the existing roof may also pose compatibility issues with new materials, so they should be documented to plan accordingly.
  • Existing Roof Substrate: Under the existing roofing, some type of substrate material is holding it up. It may be rigid insulation resting on a metal, wood, or concrete deck, or it may be an uninsulated substrate that has insulation below it. The specifics here need to be established, since the new metal framing will need to connect through this material. If insulation is in fact part of the substrate, then its effectiveness should be determined—has it gotten wet and been compromised, or is it still in good usable condition? Either way, how much is there?
  • Existing Roof Structure: The structural system of the building includes framing or other components that support the roof. This is what the new metal framing will anchor to and transfer structural loads to. Hence, the specifics in terms of type (steel joists, concrete beams, wood joists, etc.), the size, and the spacing are critical. Further, the carrying capacity of this system should be assessed and analyzed by a structural engineer, since the retrofit system will add 2 to 4 pounds per square foot of dead load to the roof structure. Further, this weight, plus any live loads from the roof, will typically not be distributed uniformly, but in a series of point loads. Therefore, the engineered capacity of the existing structure needs to be known to determine if any structural enhancements are needed.
  • Existing Roof Equipment: Many commercial buildings use the roof to locate mechanical, electrical, or elevator equipment. In some cases, that equipment can be moved to the ground or elsewhere, but in other cases it can’t, or would be too costly to consider. Hence the details, location, and height of such equipment needs to be known so a determination can be made on whether it can be covered and enclosed in the “attic” of the retrofit system, or if it will need to be raised to the top of the new roof.

New Retrofit Roofing Goals

With an assessment of the existing conditions in hand, the focus now becomes identifying the primary objectives of the new roof. These should be clearly articulated so the final design can address and include each of them:

  • Appearance: What is being sought in terms of shape, height, visibility, color, improved curb appeal, or other visual considerations?
  • Performance: What is the new roof being asked to address related to operations or performance issues? Common elements could be improved drainage, less maintenance, greater longevity, or more resistance to damage.
  • Energy Efficiency: Replacing a roof is the ideal time to improve energy efficiency in a building by adding new or more insulation. This could be done simply to meet current energy code requirements or to contribute to an overall energy-use reduction project at the building. In some cases, the new roofing system could enhance the ability to include energy generation, such as solar panels mounted to the new roofing system.

With proper planning and goal setting, a metal retrofit system can meet or exceed all expectations. This was the case recently at a water treatment facility in Dallas, Texas. Here is a photo of the existing built-up roof that was experiencing problems and needed replacement. It was assessed, analyzed and determined to be an excellent candidate for a retrofit metal roofing system.

Retrofits

 

Metal Roofing Retrofits
Here is a photo of the light-gauge metal framing installed to create the new low-slope planes and transfer loading to the existing building structure.

 

Planning for Retrofits
And, finally, here is the completed metal roofing, which looks better and is expected to perform better than the original roofing.

 

To learn more about MBCI retrofit metal roofing systems and how they might work on a building you are involved with, visit http://www.mbci.com/products/retrofit-products/.

Find a sales representative