Overhead Door Considerations for Metal Buildings

Selecting the right overhead door shouldn’t be an afterthought. As with metal panels, they should be a key consideration when planning and designing a commercial or industrial metal building. Functionality (i.e., size, operation and environmental concerns), security and quality are priority factors. In addition, location, climate and building codes should also be part of the overhead door solution decision. Selecting a door type and framing, in fact, can further depend on end use, strength/longevity needs, access and clearance/framing restrictions. Additionally, the type of door requested or required will impact the framing and support needed for installation.

MBCI Blog: Overhead Door Considerations for Metal Buildings

With these criteria in mind, its of note that metal building manufacturers don’t always supply the overhead doors for a project. Therefore, ensuring compatibility and optimal performance requires viewing door options from top to bottom and side to side—figuratively and literally.

Overhead Door Types

Although MBCI primarily offers roll-up doors, these are not the only door options for metal buildings. The primary types of commercial doors for large metal building openings can include the following:

  • Roll-Up Doors aka coiling/drum doors are typically a continuous corrugated sheet that nests into itself as its rolled around a cylindrical drum at the top of the door opening. This nesting allows them to take up far less overhead space as compared to doors that slide on tracks. Generally less expensive to purchase, roll-up doors also boast durability, maintenance and longevity benefits.
  • Sectional Doors are typically smaller horizontal door leafs/ panels hinged together and mounted between two tracks on both sides of the door. This permits the sections to be lifted continuously either by transitioning horizontally back into the building above the door opening or vertically only above the opening, clearance permitting.
  • Vertical or Horizontal Bi-Fold Doors are similar to sectional doors but have much larger panel sections, requiring fewer door panels. Manual operation is an option, however operation most often occurs via hydraulics with the support of door headers or jambs only and not via a full track system.
  • Sliding Doors may be mounted via an external or internal horizontal track system at the top of a frame’s opening. Depending on door weight and size, sliding doors may rely on support from the top track system or lower guide rail mounts and wheels as well. Top-mount-only systems are prevalent on smaller commercial doors or in agricultural uses. Larger versions typically support industrial applications like airplane hangars and freight facilities.

Planning Ahead: Coordination Is Key

Once you’ve selected the overhead door type best suited to your project, coordination with the building manufacturer is a must. Specifically, be certain that the building manufacturer knows the type and size of your doors before ordering your building materials. Here are some factors and situations you will want to account for:

  • Door Opening Size: Allow ample space to ensure no obstructions when the door is in its maximum open position. Even partial obstructions may require building design adjustments to accommodate for larger openings.
  • Door System Weight: The weight of the entire door system—including framing, sheeting, hardware and drive systems (if applicable)—can require certain design considerations.
  • Clearances: When open, the horizontal and vertical panel clearances shouldn’t foul trims or building exterior cladding.
  • Installation Clearances: Be sure to understand minimum interior building clear heights needed if installation of track systems are necessary. Or, if using roll-up doors, account for drum clearance and its proximity to roof framing, ceiling liners or roof insulation.
  • Framing Materials: Be sure surfaces and flanges of framing materials are wide enough for proper attachment of door tracks. The same goes for mounting hardware and mechanical operators if so equipped and required.
  • Bracing: If appropriate, evaluate any supplemental bracing necessary to keep the door opening square. Additionally, support for the door sheet in all positions should also be a consideration.
  • Verify Manufacturer Requirements: Work with the door supplier and advise the building materials manufacturer if the door opening, framing and/support require minimum or maximum deflections/limits. This helps ensure proper operation when building framing deflects under various loadings. Failure to do so may prevent the door from opening or closing properly. This coordination is made easier when the same manufacturer providing the roof and wall materials also provides the overhead doors.

In Conclusion

Always ensure you’re getting high quality metal overhead door products and services that seamlessly integrate into new or existing metal building projects. Regardless of scope, MBCI can help you find the best overhead door solution suited to your needs and project specifications.  Contact MBCI today!

Cutting Metal Panels Properly On Site

Cutting metal panels on site is an often-necessary part of installing metal roofing and wall panels. However, using the right tools and methods to ensure the panels remain damage-free is vital. Using the wrong tools can result in rust, rust stains, the voiding of warranties and diminished building service life. In this blog post, we’ll share several common field-cutting techniques and best practices that help ensure good results.

 

Maintaining Longevity When Cutting Metal Panels On Site

When metal panels are made in a manufacturing facility, the tools and methods used to cut the coated metal coil help protect the cut edge from deterioration like corrosion. When cutting metal panels on a jobsite or in the field, protecting any cut edges is just as important. To understand how to field-cut metal panels without sacrificing the quality and protection delivered from the manufacturing facility, you must first understand the what protects the panels. Most often, metal roof and wall panels are fabricated from Galvalume®-coated steel coil because of its proven longevity. Not only does the Galvalume coating protect the surface area of the metal panels, it has also been shown to be effective along the thin edges of the metal too, as long as those edges are cut properly.

During fabrication, the Galvalume metal panels are cut to length either by shearing while flat before entering the roll former, or by means of a profile shear as the panels exit the roll former. Either method tends to “wipe” the Galvalume coating across the cut edge of the metal panels. This provides superior cut-edge protection from corrosion.

Likewise, when panels arrive on site, any needed field cutting should address the same concerns of protecting the edge of the steel from corrosion. Of course, there are ways of doing the field cutting correctly. However, there are also poor strategies that can lead to real problems. The following are examples of common field cutting tools and the best practices for good results.

 

Common Tools and Methods for Cutting Metal Panels On Site:

Aviation Snips

Red and green aviation snips are a good choice for small cuts on metal panels, such as around pipe penetrations. These snips will wipe the Galvalume® coating in the same way as factory shears, making them a good choice.

Electric Shears

Electric shears are optimal when making lengthier cuts along the steel, such as cutting a wall panel at a corner or at a door opening. These shears take a ¼” strip of metal out of the panel during the cutting process, which tends to leave both sides of the panel smooth and flat along the cut. Like the aviation snips and factory shears, electric shears will wipe the Galvalume coating and protect the edges.

Mechanical Shears

Mechanical shears are an add-on tool that fit onto a battery-operated impact or screw gun. These shears do not take any metal out of the panel and will leave a slightly wavy edge. Mechanical shears are an excellent choice for bevel cutting standing-seam panels at hips and valleys, since they too wipe the Galvalume coating over the cut edges to offer protection.

Nibblers

A nibbler is a great tool for cutting across corrugations in wall panels to create openings for windows, doors and similar structural additions. A good nibbler typically costs $500-$700 (currently), but is well worth it if you often cut corrugated metal panels. The punch and die in the nibbler tends to wipe the Galvalume across the cut edge as it punches out small, half-moon shaped pieces of panel. However, because these little metal pieces will fall away from the cut, it’s important to contain them so no one walks on them. Otherwise, they can embed in the soles of installer’s shoes and create scratches in roof panels when they walk on the roof.

Skill Saw

Skill saws are an ideal tool for cutting metal panels because of their versatility. This tool can cut either across or parallel to corrugations, whether straight or at an angle. When using a skill saw, it is critical to use a saw blade that cuts cool. Otherwise, the Galvalume coating can melt along the cut edge and become ineffective. In particular, do not use an abrasive blade, which will generate heat and damage the coating.

MBCI Blog: Field Cutting Metal Panels On Site
Panels cut with abrasive blades corrode. A cool-cutting blade leaves a smooth edge.

 

 

 

 

 

 

 

 

 

 

Additionally, its vital to avoid cutting panels on the roof or above other panels. A skill saw blade will throw considerable amounts of steel debris into the air and down onto any panels below. This debris, called swarf, will quickly rust and ultimately cause rust spots in the panels. If enough swarf gathers in one spot, it can rust through the panel.

MBCI Blog: Field-Cutting Metal Panels On Site

Steel swarf, like this collected at the ridge will rust through the panel.

 

Which Tools Should To Avoid When Cutting Metal Panels On Site:

Tools that should never be used include:

  • Torches
  • Cut-off saws
  • Reciprocating saws
  • Hacksaws
  • Grinders

All of these tools will melt the Galvalume® coating, causing edge rust just like an abrasive blade would. These tools also throw a lot of steel debris (swarf) onto the panels they cut. This debris will be hot and will embed into the panel coating. This can cause rust spots and bigger problems down the road.

In conclusion, using the right tools and following metal panel manufacturer recommendations when cutting metal on site will help ensure that the panels remain damage-free and the final installation will be a fairly seamless process. Using the wrong tools can result in rust, rust stains, and the voiding of warranties. For more on best practices and recommendations for on-site cutting and installation of metal panels contact your local MBCI representative.

Upgrading Your Roof with Metal Panels

In a recent blog post, we reviewed key considerations to help a building owner decide whether to repair or replace a damaged roof. In this post, we’ll address some ways metal roofing systems are an advantage when upgrading your roof and restoring your building to “like-new”, weathertight condition.

MBCI Blog: Upgrading Your Roof with Metal Panels

Installing Metal Panels Over Existing Roofing

Some owners are concerned about replacing a roof because they dread the cost of removing the existing roof. This concern is valid in many low-slope roofing situations because the new roofing membrane might not be compatible with the existing one, and could cause premature deterioration. There are, however, metal panels specifically designed to be installed directly over existing roofing. And, many of these retrofit systems can be installed over existing roofs made of metal or other materials. Avoiding removal of the old roof obviously saves on cost. However, it also saves considerable time when installing the new roof. As an exposed-fastener metal roofing system, this retrofit application also requires fewer construction components, further streamlining the installation process.

Retrofit metal panels typically feature a membrane treatment that prevents rust or contaminants from the old building materials from transferring to the new panels. This is a versatile solution for both low- and steep-slope roofs (minimum slope: ½:12). It is also very durable and can feature approvals for use in extreme weather locations, including Florida. Metal panels are available in a variety of colors that enhance the overall design of a building. Often, this “replacement metal over existing roofing” approach is the most cost-effective, even compared to some repairs. Additionally, new roofing is more likely be eligible for a warranty, while repairs rarely, if ever, are.

Upgrading Your Roof with Insulated Metal Panels

Energy conservation is on the mind of many building owners and building code enforcement officals. Therefore, adding insulation when upgrading your roof is often required to adhere to building codes. In this case, applying zee-shaped sub-purlins over the existing roof system helps support a new layer of metal roofing. In between the sub-purlins, insulation can be added to meet or exceed current energy code requirements. This system also eliminates the need to remove the existing roofing while providing an added layer (or more) of insulation to improve the overall energy performance of the building. Insulated metal panels (IMPs) like MBCI’s can help keep buildings cooler in summer and warmer in winter—conserving energy year-round.

Sub-purlin systems can fit any existing metal panel, support new panels, and be made to accommodate many types of insulation between the old and new roofs. They can also  support or incorporate a variety of solar energy systems where desired. Roof panel options include variety of profile shapes, textures and colors to suit aesthetic preferences.

Altering the Roof Slope

In some cases, upgrading your roof means changing the roof slope (i.e., turning a low-slope roof into a steeper-sloped roof). In these cases, metal roofing systems can be the most economical choice. Steel framing (16-ga. to 12-ga.) installed over the existing roof frame creates a sloped plane that can support new metal roofing panels. Note that the existing physical shape of the roof, the existing structural system and other rooftop conditions are usually the biggest factors in the geometry and shape of the new roof. Nonetheless, the beauty of the system is that it can dramatically improve the appearance and drainage of a building’s roof, regardless of whether the substrate is steel, wood or concrete.

Lower-slope applications (1/2: to 2:12) are typically driven by economy and designed to efficiently discharge rainwater from the roof. Higher-slope applications (greater than 2:12) often serve to improve and update the look of an existing building. They achieve this by showcasing the metal roof while also improving its drainage and durability. Once the framing is installed, standing-seam metal panels can be installed over the top, creating a ventilated attic space. This allows space for additional insulation , thus improving the energy performance of the building.

Working with Building Professionals

Any of these options are applicable over an existing metal roofing system. They cab also convert other types of roofing systems to longer-lasting metal roofing, or replace an existing roofing system altogether. Of course, engaging the services of a design professional (architect, engineer, etc.) is always appropriate when considering your options. They can help properly assess existing building conditions and recommend the best overall metal roofing solution from metal panel manufacturers.

To learn more about upgrading your roof system with more durable, longer-lasting, better-draining and easier-to-maintain metal roofing systems, contact your local MBCI representative.

Should You Repair or Replace a Roof? How to Decide

Roofs on buildings of all types are prone to damage, wear, deterioration, or leaks. When this happens, it leaves the owner wondering whether to address the problem through repair or replace the entire roof. How to decide? There are a number of key considerations:

MBCI Blog: Repair or Replace Your Roof?

What is the existing roof type?

Different roofing materials require different construction methods, and range in suitability for various types of building conditions. Low-slope roofs commonly feature either asphalt/bituminous roofing, polymer-based membranes or metal roofing. Each of these roofing types has its own procedures, materials and costs associated with identifying and repairing a leak. Steeper-sloped roofs can feature asphalt shingles or metal roof panels. These have various life-span expectations (metal lasts much longer, for example) and different ways to identify issues. Understanding the existing roofing type is fundamental in deciding on the best course of action.

Is the roof under warranty?

Regardless of the roofing type, there may be a warranty in effect that requires any inspection and repair work to be performed by someone certified or approved by the roofing manufacturer. Otherwise, undertaking an independent repair may render the warranty null and void. Hence, before anyone does any work on the roof, contact the manufacturer and confirm the applicability (or not) of a warranty. At this time, you can also evaluate any other options or conditions for a repair. The advantage of a warranty is that there should be little, if any, cost to the owner to repair the roof as long as the work is done according to the warranty terms. Without a warranty in effect, it’s entirely up to the owner to decide whether to repair or replace the roof.

How old is the roofing?

If the current owner is the original owner of the building, the roof age should be easy to determine. But what if this is a pre-owned building? It is often beneficial to determine how old the roofing is so you can understand any potential service-life trade-off. This will play directly into the cost-efficiency of a repair versus a replacement. If the roof is near the end of its service life, then a repair might not make sense if a full replacement is imminent anyway. If the roof is fairly new, then the question of how long a repair may last is important. Will it need to be repeated again before the roof is ready for replacement, and if so, at what cost?

Where is the actual location of the damage?

Is it really the roofing that’s a problem? Could it be something related—such as edge flashing or seals around a roof penetration (i.e. a chimney, pipe, or rooftop equipment connection)? If the damage is in isolated areas, a simple repair or flashing replacement may be the easiest solution. If the condition is more widespread, however, then a replacement may be more logical to address the larger area(s) affected.

 Is this building in a high-risk area for more damage?

Buildings prone to high winds or other severe weather need a more durable roofing system than areas where the weather is less dramatic. If the building is in a high-risk area, it might be reasonable to avoid relying on repairs and instead go for a full replacement.

Are there other inherent issues?

Sometimes, the roof covering isn’t the root of the problem. For example, Low-slope roofs often experience “ponding,” where water can sit in a slightly depressed or settled section of the roof. This can lead to deterioration and leakage over time which is not the fault of the roofing, but of the structure or insulation beneath it.

Similarly, steeper-slope roofs may be designed with a geometry or penetrations that prevent proper drainage and cause issues due to water backups. Or, perhaps ice build-up in winter is causing problems with the insulation in the roof system. Identifying the proper issue that is causing the problem will allow for selecting the best solution.

Deciding to repair or replace

Answering the basic questions above will likely reveal which approach—repair or replace—is most appropriate. Small areas of damage in areas in low-risk locations may best be served by simple repairs. If there are many years of roof life remaining or a warranty is in effect, this is especially true. However, missing or faulty components, worn or brittle membranes, or rusting metal panels may all be indications to replace the roofing entirely. This is even more important if the roof is quite old, out of warranty, or in a high-risk area.

In our next post, we’ll look at how metal roof systems help solve a variety of problems within different budgets. In the meantime, contact your local MBCI representative to learn more about roofing warranties and roofing systems for buildings.

Are Metal Panels An Ideal Low-Slope Roofing Material?

Many large, commercial, low-rise buildings often don’t benefit from steeply-sloped roofs the way residences and small commercial buildings might. This is because a steep roof slope would add unwanted height and unnecessary construction cost. Buildings like warehouses, retail stores, etc. are more appropriately built with low-slope roofing, commonly known as “flat roofs”. The National Roofing Contractors Association (NRCA) defines low-slope roofs as those with “a slope at or less than 3:12″. Anything steeper qualifies as a “high-slope roof”. With this in mind, let’s look at some key points to consider when designing and constructing a low-slope roof.

MBCI Low-Slope Roofing

 Low-Slope Roofing Materials

When it comes to selecting low-slope roofing products, there are generally three fundamental choices:

  • Asphalt/ Bituminuous Products: The traditional commercial roofing norm for many years, the use of asphalt/bituminous products has dwindled as newer, more appealing options have emerged.
  • Flexible Membrane Roofing: This roofing material can be made from a variety of types of plastic/polymer-based materials (commonly known as EPDM, TPO, PVC, etc.). Rolls of the chosen membrane are laid out on the roof structure and secured in place either with mechanical fasteners (screws with large washers) or with a continuous layer of adhesive.
  • Metal Roofing: Sometimes overlooked, metal roofing is suitable for different roof slopes. Many metal roofs that use standing-seam systems are rated for use with a pitch as low as ½:12.

When considering which type of roofing material to use for a building project, there are a number of significant differences that illustrate why metal roofing is often the ideal choice.

Engineered For Superior Performance

Standing-seam metal roofing is made specifically for use on low-slope roofs as it meets a number of performance requirements:

  • Water resistance: Precipitation doesn’t penetrate through metal or through the standing seams where the metal panels join together. This is why they can tolerate such low slopes, allowing the water to drain away slowly and predictably without leakage.
  • Rigidity: The rigid nature of metal means that there is less opportunity for ponding (standing water). This is not always the case with asphalt/bituminous or membrane roofing systems.
  • Drainage: Metal roofs carry water to the building’s edge toward gutters and downspouts that carry it away from the building. Other roofing systems rely on drainage piped inside the building. This takes up space and has the potential to leak water inside the building and cause damage.
  • Wind Resistance: Standardized uplift testing shows that metal roofing performs as well or better in extreme weather than mechanically-fastened or fully-adhered membrane systems.
  • Durability: The most cited advantage of metal roofing is its long-term strength and durability. Engineered design and use of high-quality coatings ensures a longer lifespan—50 years or more. In contrast, other roofing types typically feature lifespan ratings of 20 or 30 years.
  • Puncture Resistance: Low-slope metal roofing is more puncture-resistant than asphalt/bituminous or membrane roofing. This makes it better able to tolerate foot traffic, hail and other puncture-inducing hazards.
  • Construction/ Installation Ease: Metal roofing panels are custom-made to suit specific building sizes and end uses. This customization typically means it takes less time to place and install metal roofing in the field. Further, metal panels can tolerate a wide range of temperatures and weather conditions and still install and perform as intended. Low-slope roofs are also safer to walk on with less risk of slips, falls and other hazards.

Cost-Effectiveness

Using metal roofing on low-slope roofing systems can be cost effective in a number of ways:

  • Fewer labor hours as a result of the ease of installation saves money during construction.
  • Competitive material costs, particularly if the metal roofing is part of a total metal building package from a single manufacturer.
  • Minimal maintenance requirements and aversion to rusting, mold growth and decay that save the building owner money over time.

This all adds up to a very favorable life-cycle cost.

The performance, cost-effectiveness and life-cycle benefits of metal roofing panels make them a viable option for low-slope roofing systems. Manufacturers like MBCI can help you select the right metal roofing products and provide information and resources to help ensure proper installation.

View examples of low-slope metal roofing projects and contact your local MBCI representative to start your project today.

Metal Roof Seaming: Best Practices for Ensuring Weathertight Seams

It would seem logical that the most important field installation process for a standing-seam metal roof is the actual process of creating the weathertight seams that connect the metal panels together and ensures the structural integrity of the roof. Perhaps for many different reasons, however, this critical seaming process is not always given the proper attention it deserves, nor are installers given the proper training required to ensure installation runs smoothly. This approach can cause some serious issues, not the least of which is the voiding of a manufacturers warranty or the discovery of roof leaks and the resulting damage.

To help, here are some best practices for readily and successfully carrying out the metal roofing seaming process:

MBCI Blog Image_Seaming_062019_00_in post_reduced

Personnel

Because of the critical nature of seaming metal roofs, the crew members doing this work should be properly trained. Team members who will be performing this work should not perform the seaming without having participated in the appropriate installation training required to ensure the seaming process is appropriately managed. Most roofing manufacturers offer installation training that many installers take advantage of—and this training opportunity should be taken advantage of by the staff who will be doing the seaming.

Seaming Equipment

It is very important that the seaming equipment being used is matched to the specific roof panel system being installed. Manufacturers routinely rent out this equipment in order to be sure that the metal panel profiles are installed properly and are not compromised through the use of generic equipment or that of another manufacturer. Using the wrong equipment can end up being costly for everyone if panels and seams are ruined in the process.

 Hand Crimper

As metal panels are set in place, they are often secured with metal clips, spaced according to engineering and construction needs. Hand crimpers are used to form the seams around the clips as well as any end laps. This process must not be overlooked as improper hand tooling is the number one cause of faulty seaming. To ensure costly mistakes aren’t made, follow the process described in the “Field Seaming Tool Manual”. This manual should be provided with the equipment and reviewed in training.

Electrical Sources

The next step will involve the use of an electric seamer which obviously needs a source of electricity to operate. However, not just any electrical power source will do. Almost all professional seamers have an AC/DC motor that will require 10 or 15 amps and 120 volts. A dedicated electrical circuit—preferably from a temporary electrical pole or an existing building electrical panel—is the best and most reliable way to go. A generator with 15 amp capacity dedicated to be used only for the seamer (in order to avoid power surging) may be acceptable as well. In either case, the power line to the seamer needs to be 10-gauge (minimum) cord. It should also be no more than 200 feet long (to avoid power drop).

Electrical power sources that are NOT acceptable include outlets from a powered man lift or a generator that is not dedicated to only the seamer. (This includes a generator that is part of a welding machine.) Check the manufacturer’s requirements for any other restrictions that can damage the seamer. Skipping this step can place the responsibility for repair or replacement onto the installer.

Electric Seamer

Once all panels are in place, the hand crimping is done and the power source is set. Then, electric seaming takes care of finishing the roofing system. Again, consult the seamer manual for proper procedures, including which direction the seaming should be done. (Seaming can either be done up or down the roof depending on direction of roof installation.) The electric seamer includes a switch for the operator to control the starting and stopping of the process.

On low-slope roofs, the operator should walk alongside the seamer to be sure nothing is in its path and that the seam is done properly. While stopping and re-starting is fine, the seamer should never be removed in the middle of a seam. Doing this makes it very difficult to set it back in exactly the same spot again. If something appears to be wrong with the seamer or the seams being produced, then don’t keep using it. There is no point in damaging multiple roof panels if any one panel indicates that things aren’t going right. In this case, contact the manufacturer right away for assistance or replacement of the seamer.

Safety

Electrical seamers are heavy and—if not used and secured properly—can cause harm or injury. Therefore, they should always be tied off with a safety line—the same type used for workers—not a common rope and definitely not the electrical cord. The safety line should be properly secured to the seamer and then attached to something rigid on the building. Never attach this to a person who could be pulled off of a roof by it.

Cleaning

Before use each day, check the electric seamer and remove any oils, debris or dirt. Make sure the seamer is unplugged from the electrical power source before you begin cleaning. Also, check the grease level in the machine daily and only add a little bit  (2-3 pumps from a grease gun) as needed. Too much will cause the grease to leak out onto the roofing.

Following these pointers should help assure the safe and efficient use of the right seaming equipment when installing roofing panels. To find out more about proper seaming or to schedule training, contact your local MBCI representative.

Understanding LEED for Green Metal Buildings

Designing and constructing sustainable buildings has become a mainstream expectation of most building owners. Whether for reduced energy costs, higher returns on investment, or as an organizational philosophy, “green” building solutions are in demand. Perhaps the best known and most often cited program to achieve these goals is the US Green Building Council’s (USGBC’s) LEED® rating system. While some may think that green buildings are more complicated and costly to build, that is not actually the case. This is especially true when metal building materials are used. In fact, metal buildings are an ideal and economical way to pursue sustainability goals and LEED certification. How? We break it down as follows:

LEED

The LEED® Program

The LEED program has been in use since 1998 and is now used worldwide. It is a voluntary, point-based rating system that allows for independent review and certification at different levels. These levels include Certified (40-49 points), Silver (50-59 points), Gold (60-79 points), or Platinum (80 or more points). Since it allows for choices in which points are pursued, innovation and flexibility are entirely possible as long as specific performance criteria are met. It also encourages collaborative and integrative design, construction and operation of the building.

Points are organized into six basic categories, many of which can be addressed through metal building design and construction, as summarized below.

  • Location and Transportation: Metal buildings can be manufactured and delivered to virtually any location. That means they can support LEED criteria for being located near neighborhoods with diverse uses, available mass transit, bicycle trails, or other sustainable amenities. Metal building parking areas can also be designed to promote sustainable practices for green vehicles and reduced pavement. This all contributes toward obtaining LEED eligibility.
  • Sustainable Sites: Adding a building to any site will certainly impact the natural environment already there. Delivering portions of a pre-engineered metal building package in a sequence to arrive as needed means that the staging area on-site can be minimized—reducing site impacts. Additionally, using a “cool metal roof” has been shown to reduce “heat island” effects on the surrounding site and also qualify for LEED.
  • Water Efficiency: Any design that reduces or eliminates the need for irrigation of plantings and other outdoor water uses is preferred. Incorporating metal roofing with gutters and downspouts, as is commonly done on metal buildings, allows opportunities to capture rainwater for irrigation or other uses. It also helps control water run-off from the roof and assists with good storm water control.
  • Energy and Atmosphere: Metal buildings can truly shine in this category. Creating a well-insulated and air-sealed building enclosure is the most important and cost-effective step in creating an energy conserving building. A variety of insulation methods for metal building roof and wall systems are used to achieve this. Typically, metal building construction uses one or more layers of fiberglass insulation and liners combined with sealant and air barriers. Alternatively, insulated metal panels (IMPs) provide all of these layers in a single manufactured sandwich panel with impressive performance. Windows, skylights and translucent roof panels can provide natural daylight, allowing electric lighting to be dimmed or turned off. For buildings seeking to generate their own electricity,  standing-seam metal roofing provides an ideal opportunity for the simplified installation of solar photovoltaic (PV) systems. Metal roofs generally provide a sustainable service life in excess of 40 years. This means they can outlast the PV array, thus avoiding costly roof replacements during most PV array lifespans.
  • Materials and Resources: Life Cycle Assessments (LCAs) are recognized by LEED as the most effective means to holistically assess the impacts that materials and processes have on the environment and on people. Fortunately, the Metal Building Manufacturer’s Association (MBMA) has collaborated with the Athena Sustainable Materials Institute and UL Environment to develop an industry-wide life cycle assessment report. There is also an Athena Impact Estimator that can help with providing LEED documentation. Metal buildings support exceptional environmental performance through the significant use of recycled steel and the reduced need for energy intensive concrete due to lighter weight buildings.
  • Indoor Environmental Quality: Most people spend much more time indoors than outside, which impacts human health. Therefore, LEED promotes or requires using materials that don’t contain or emit harmful substances. It also promotes design options for natural daylight, exterior views and acoustical control to promote psychological and emotional well-being. Metal buildings are routinely designed to readily incorporate components that help achieve these indoor qualities.

In addition, some LEED points are available for demonstrating innovation and addressing priorities within a geographic region.

Considering the qualities listed above, metal buildings clearly provide a prime opportunity to pursue LEED certification at any level. To find out more about the LEED rating system, visit https://new.usgbc.org/leed. To find out more about successfully designing and constructing metal buildings pursuing LEED certification, contact your local MBCI representative.

Doors of Steel: Metal Roll-Up Doors for Any Application

Metal roll-up doors are designed specifically to offer security and durability in a variety of applications. MBCI offers a series of roll-up doors to service the self-storage and commercial markets.

Here, we’ll provide some key product details to help guide you to the right product for your application.

Self-Storage Doors

Built to meet the specific and unique demands of a small structure, MBCI doors offer many standard features that make it a superior choice. These include a proprietary gear-driven tensioning bracket for safe and easy adjustments, a rust-resistant aluminum bottom bar to protect against the elements and a standard stainless steel latch.

650 Series: The best choice for a low-maintenance, wind-certified self-storage roll-up door.

Transform your storage building’s exterior and protect your tenants’ assets with the 650 Series steel-curtain roll-up door. Wind-load tested in accordance with IBC, FBC and TDI, the wind-certified 650 Series was engineered to protect and maintain building envelopes in extreme conditions without the heavy, weighted elements required in frequent commercial use. The 650 Series provides tenants and facility or building owners piece of mind with sturdy construction that requires little to no maintenance. Wind-rated up to 8’ 8” and approximately 90 mph, the 650 Series door is ideal in coastal areas that experience large wind gusts and hurricanes, and comes with a 30-year film integrity warranty and up to 25-year chalk and fade warranty. Our 650 Series offers insulation for better energy efficiency and is perfect for climate controlled storage. We also offer top and side draft stop kits to reduce drafts.

690 Series: The premium choice for mini-warehouse and self-storage buildings in areas susceptible to extreme winds.

The 690 Series steel-curtain roll-up door is designed to operate smoothly and perform well in severe weather. They won’t buckle, bow, become misaligned from the tracks or separate from the door frame during strong storms and wind events. Featuring 16-gauge galvanized steel guides and a wind bar, the 690 Series is wind-rated up to 10’ and approximately 140 mph—ensuring they meet mini-warehouse wind-load requirements. Our metal roll-up doors are wind-load tested in accordance with IBC, FBC and TDI, allowing facility managers to avoid higher up-front insurance costs and reduce maintenance costs and down-time in the event of a storm. For climate controlled units, our 690 Series offers insulation to help improve energy efficiency along with our top and side draft kits.

Whether for commercial or self-storage uses, MBCI offers a variety of doors with many applications.
Whether for commercial or self-storage uses, MBCI offers a variety of doors for different applications.

Commercial Series

MBCI’s commercial-grade, steel curtain roll-up doors offer tremendous versatility, unparalleled quality, are easy to install and require minimal maintenance. With a variety of models, colors and mounting options, it is our goal to provide the right door for any application and back it with the best warranty you can find. These commercial doors are available as light gauge and heavy gauge; some options are wind-certified.

Light-duty roll-up doors: Quality roll-up steel doors engineered to withstand frequent use and outperform others in the industry.

MBCI offers two steel roll-up doors ideal for light-duty commercial use in everything from warehouses and farms to recreational storage and auto body shops. Available with electric motors and multiple mounting options, the 1900 Series and 2000 Series are versatile and low maintenance.

1900 Series: Known for operating quietly and requiring less headroom, the 1900 Series door is suitable for a number of light-duty commercial and recreational uses.

2000 Series: The 2000 Series is the perfect door for light-duty applications that require frequent use.

Heavy-duty roll-up doors: The integrity, partnership and quality behind the design and production of our heavy-duty commercial doors make them the most durable and reliable in the industry.

Perfect for high-traffic use, our heavy-duty, commercial-grade metal roll-up doors are suitable for warehouses, loading docks, terminals, and distribution centers. Our quality sets us apart; every MBCI commercial door features heavy-duty brackets made of .187-thick angle, a high-cycle spring life and continuous-duty design. Wind-load tested in accordance with IBC, FBC and TDI, our heavy-duty commercial-grade doors are wind-certified to meet stringent building codes in coastal regions, including Florida and Texas.

2500 Series: Our 2500 Series is a heavy-duty sheet door suitable for warehouse and freight buildings.

3000 Series: The wind-certified heavy-duty, commercial-grade 3000 Series door is designed to meet or exceed most wind rating codes.

5000 Series: Wind-rated and available up to 16′ wide, the 5000 Series will last for years with little to no maintenance.

Wind-certified doors: Commercial metal roll-up doors from MBCI are wind certified to perform against high winds and meet building codes. Fueled by constant changes in local and national building codes, as well as increasing insurance costs, doors with validated wind certification can dramatically reduce maintenance and replacement costs and minimize downtime. MBCI’s wind-certified doors are wind load tested in accordance with BC, FBC and TDI.

 (Note: MBCI’s 2500, 3000 and 5000 Series are all wind-certified commercial door options.)

MBCI delivers the highest quality metal roll-up door products and services that seamlessly integrate into new or existing building projects. Regardless of the project scope or wind and weather variables, MBCI has the right solution when it comes to roll-up doors for self-storage or commercial needs. Download our capabilities brochure or contact your local MBCI representative to learn more about which product is right for you.

 

Standard Testing For Metal Roofing – Part 2: Air and Water Resistance

In a prior post, we discussed the importance of independent (i.e. third party) standardized testing as a means of verifying the performance of metal roofing, and specifically looked at structural and wind uplift performance. In this post, we will similarly look at testing standards but focus on metal roofing tested for air leakage and water penetration.

Air Leakage and ASTM E1680

Keeping air from passing through a building system from the exterior to the interior (i.e. drafts) is a fundamental role of any building envelope system, including roofing. It is also important in controlling the flow of harmful airborne moisture into a roof assembly. Hence, testing a roofing panel for its ability to control air leakage is critical to the long-term success of the roofing system, and ultimately, the building.

ASTM E1680 “Standard Test Method for Rate of Air Leakage Through Exterior Metal Roof Panel Systems” is used to determine “the resistance of exterior metal roof panel systems to air infiltration resulting from either positive or negative air pressure differences”. It is a standard procedure for “determining air leakage characteristics under specified air pressure differences”. The test is applicable to the field portion of any roof area including panel side laps and structural connections but not at openings, the roof perimeter, or any other details. The test is also based on constant temperature and humidity conditions across the roofing specimen being tested to eliminate any variation due to those influences.

The standard test procedure consists of “sealing and fixing a test specimen into or against one face of an air chamber, supplying air to or exhausting air from the chamber at the rate required to maintain the specified test pressure difference across the specimen, and measuring the resultant air flow through the specimen”. Basically, the test is meant to reveal the ability of the selected roofing panel to resist the difference in air pressure between the two sides and thus demonstrate its air tightness.

The beauty of this standardized test is that different metal roofing products can be tested under the same conditions and compared. The standard calls for a pressure differential between the two sides of positive and negative 1.57 foot pounds of pressure per square foot of panel (75 paschals of pressure) and can be tested in the negative pressure mode alone if the roof slope is less than 30 degrees from horizontal.

MBCI's metal roofing products are tested to confirm airtightness and water permeability.
MBCI’s metal roofing products are tested to confirm an air tight and water-resistant roof.

Water Penetration and ASTM E1646

In addition to air leakage, water leakage in roofing systems is obviously not desired. To test the performance of metal roofing products in this regard, ASTM E1646 titled “Standard Test Method for Water Penetration of Exterior Metal Roof Panel Systems by Uniform Static Air Pressure Difference” is the norm. This standard laboratory test is not based solely on free running water, but on water “applied to the outdoor face simultaneously with a static air pressure at the outdoor face higher than the pressure at the indoor face, that is, positive pressure”. This pressurized testing is intended to simulate wind-driven rain and flowing water that can build a head as it drains. The test measures the water-resisting properties of the roofing in the field of the roof panels including panel side laps and structural connections. Just like air testing, it does not include leakage at openings, perimeters, or other roofing detail areas.

The test method itself consists of “sealing and fixing the test specimen into or against one face of a test chamber, supplying air to or exhausting air from the chamber at the rate required to maintain the test pressure difference across the specimen, while spraying water onto the outdoor face of the specimen at the required rate and observing any water leakage”. Hence, it requires the air and water to be supplied simultaneously and for the testers to observe and document the rate of water leakage under the test conditions.

The test parameters typically require at least 20 gallons of water per hour (gal/hr) overall with between 4 – 10 gal/hr in any quarter section of the tested specimen, all at specified air pressure differentials. Given that this is a fairly stringent test, it is fair to say that metal roofing that holds up under these test conditions will likely perform well under most weather conditions when installed on a building. Typically, manufacturers have developed metal roofing products with seaming and connection methods that allow them to pass this test with virtually no observable water penetration.

To find out more about the tested results of metal roofing products you may be considering, contact your local MBCI representative or see the MBCI website and select the “testing” tab under a selected product.

Why Upgrade a Roof to Metal Panels?

Have you considered using metal panels in building and roofing upgrades? Metal roofing panels from MBCI offer significant advantages over traditional roofing material, including the ability to be integrated with the existing structural system. For buildings that need to comply with strict code requirements, our huge selection of metal roofing can meet your needs.

Save Money with Metal Roofing

Using metal instead of asphalt shingles for roofing provides several cost-saving benefits, including:

  • 60-year lifespan: The strength and durability of metal is unparalleled compared to traditional asphalt shingles, and weathers the elements for a much longer period of time.
  • Sustainability: Our cool roof coatings are extremely energy-efficient, saving you cost associated with heating and cooling your building. With strict requirements in place for buildings today, reducing energy and maintenance costs is top-of-mind, and metal roofing is a simple solution that offers both. MBCI also works with LEED project documentation and has EPDs using LCA results for core panels.
  • Higher Quality Material: From insulated to standing seam and exposed fastening roof panels, our selection of panels are available in gauges ranging from 22 to 29, with a variety of finishes and coatings to ensure your metal roof stands the test of time.
  • Extensive Warranties: MBCI’s signature panels each come with their own unique warranty, with coverage for features including film integrity, chalk and fade, and more depending on the product.

It is important to note that when working with older buildings, there is a possibility of degradation of the subsurface as well as pre-existing structural issues such as overloading the structure.

MBCI's metal roofing panels are a durable and energy-efficient alternative to standard roofing products.
MBCI’s metal roofing panels are a durable and energy-efficient alternative to standard roofing products.

Panels & Systems for Every Application

  • Standing Seam Panels: Commonly used for a variety of commercial, residential, and recreational applications, these are some of the most durable and versatile systems available. We offer everything from mechanically field-seamed panels to curved and snap-together options. No matter what your building is used for, these systems withstand the elements and have fire and impact resistance ratings.
  • Lightweight Panels: MBCI’s product line features lightweight panels that can be used as framing and sheeting materials. For example, the BattenLok® HS is a high strength standing seam roof systems that can be installed directly over the purlins or bar joints. The type of metal paneling chosen for your roofing systems allows for additional customization by being able to choose your color with our extensive color chart. The experts at MBCI have years of experience matching the retrofit roof panels to the new roof membrane.
  • Exposed Fastening: With 9 different styles to choose from, MBCI’s vast selection of exposed fastener roof panels are sure to exceed your expectations. Cost-effective and easy to install, these panels are often used in commercial and agricultural buildings, and are designed for both vertical and horizontal installation.
  • Retrofit Systems: Selecting the correct roofing system is critical in the retrofitting process. MBCI’s NuRoof® retrofit system has the capability to “stick-frame” the current supporting structure. The new retrofit system allows for redistribution of loads while increasing the energy-efficiency of the building. If you prefer installing new panels over existing roofing, the Retro-R® Panel can enable you to skip the removal of the existing roof entirely. This is a great option for saving time and cost related to installation, and can keep your operation up and running with no downtime. The Retro-R® Panel’s Drip Stop membrane prevents rust from old roofs from interfering with new panels, providing a new look with a long life span. With availability in both 26 and 29 gauge Galvalume Plus® and 200 color options, the Retro-R® roofing system is a great option for retrofitting.

To find out more about which metal roofing panel is ideal for your new project or existing building, contact your local MBCI representative.

 

Find a sales representative