Appropriate Standing Seam Clips for Roof Panels

Part of the beauty and appeal of standing seam metal roofs is that the fasteners holding the metal panels in place are concealed. That gives the roof its clean, continuous appearance that is often desirable, but it also avoids the issue of potential roof leaks around exposed through-fasteners. Concealed fastening doesn’t mean that there aren’t any fasteners, though, it just means they are installed out of sight – underneath the panels. The industry standard approach is to use a metal clip that fits over the edge of a panel and that is secured with a screw type fastener to the structure or substrate below. Then it is covered by an adjacent panel or trim. The important thing to know is that not all panel clips are made the same – for good reasons.

What determines the type of panel clip to use? Here are the most common things to keep in mind:

The Manufacturer

Each manufacturer of metal roofing typically has a range of metal panel types, profiles, and brands that have their own traits and characteristics. As such, they need clips to match and fit with the manufactured panels. Hence, the first place to start with panel clip selection, is for the roofing manufacturer to be clear on the options and choices available that are compatible with their roofing products.

Building Size and Type

Fixed clips (left) and floating clips (right) are two of the most commonly used types of clips.
Fixed clips (left) and floating clips (right) are two commonly used types of clips.

Manufactured metal buildings that include metal roofing commonly use very predictable, coordinated systems. Accordingly, a standard, one piece, “utility clip” is commonly used, primarily for snap together roof panels, on metal buildings that do not exceed certain widths causing undue expansion and contraction. One piece clips allow the roofing panels to expand and contract within the clip profile, but there are limits based on the amount of movement tolerated. Alternatively, in projects where the roofing is attached to something other than a metal building frame or where standing seams are used to secure the panels together, it is advisable to use a two-piece or “floating” clip. In these cases, a base piece is secured to the structure or substrate and the clip fits both into the base and over the roofing panel where it is seamed or folded into the vertical leg of the panel. Using this approach, the clip expands and contracts directly with the metal panel thus moving across the base and keeping the roofing attached.

Insulation

Roof insulation comes in different thicknesses, appropriately so for different climate zones and different roof designs. Since energy codes require at least some of the insulation to fit between the underside of the metal roofing panel and the structure (i.e. above the metal roofing purlins), the metal panel clip needs to be the right height to reach the full height of the insulation up to the top of the roof panel. Hence, manufacturers offer different sizes and heights of panel clips designed to work with different heights of insulation. In many cases, they also recommend the use of a thermal spacer underneath the clip to separate it thermally from the steel structure below. Note that the thermal spacer thickness is dependent on the insulation thickness over the steel purlin only, not the thickness of any insulation under the purlin.

A certified installer should install your standing seam roof to ensure proper installation of clips.
A certified installer should install your standing seam roof to ensure proper installation of clips.

Other Factors

The panel clips connect the roof panels to the roof structure, so they need to be installed in a manner that allows them to do that job under normal and demanding circumstances. The driving issue in this case is not keeping the panel down, but preventing it from blowing off in a strong wind. Therefore, a structural engineer or other design professional may need to determine the proper spacing of the clips, the type and size of fasteners (i.e. screws) to use, or similar important details. Similarly, the proper installation of clips so that they seat and nest the way they are intended, means that qualified and certified installers / erectors should be used. In this way, roofing crews with the needed experience and training can help assure that the whole roofing system, including the panel clips, are installed properly.

To find out more about the most appropriate panel clips to use on a metal roof that you are involved with, contact your local MBCI representative.

Standard Testing For Metal Roofing – Part 2: Air and Water Resistance

In a prior post, we discussed the importance of independent (i.e. third party) standardized testing as a means of verifying the performance of metal roofing, and specifically looked at structural and wind uplift performance. In this post, we will similarly look at testing standards but focus on metal roofing tested for air leakage and water penetration.

Air Leakage and ASTM E1680

Keeping air from passing through a building system from the exterior to the interior (i.e. drafts) is a fundamental role of any building envelope system, including roofing. It is also important in controlling the flow of harmful airborne moisture into a roof assembly. Hence, testing a roofing panel for its ability to control air leakage is critical to the long-term success of the roofing system, and ultimately, the building.

ASTM E1680 “Standard Test Method for Rate of Air Leakage Through Exterior Metal Roof Panel Systems” is used to determine “the resistance of exterior metal roof panel systems to air infiltration resulting from either positive or negative air pressure differences”. It is a standard procedure for “determining air leakage characteristics under specified air pressure differences”. The test is applicable to the field portion of any roof area including panel side laps and structural connections but not at openings, the roof perimeter, or any other details. The test is also based on constant temperature and humidity conditions across the roofing specimen being tested to eliminate any variation due to those influences.

The standard test procedure consists of “sealing and fixing a test specimen into or against one face of an air chamber, supplying air to or exhausting air from the chamber at the rate required to maintain the specified test pressure difference across the specimen, and measuring the resultant air flow through the specimen”. Basically, the test is meant to reveal the ability of the selected roofing panel to resist the difference in air pressure between the two sides and thus demonstrate its air tightness.

The beauty of this standardized test is that different metal roofing products can be tested under the same conditions and compared. The standard calls for a pressure differential between the two sides of positive and negative 1.57 foot pounds of pressure per square foot of panel (75 paschals of pressure) and can be tested in the negative pressure mode alone if the roof slope is less than 30 degrees from horizontal.

MBCI's metal roofing products are tested to confirm airtightness and water permeability.
MBCI’s metal roofing products are tested to confirm an air tight and water-resistant roof.

Water Penetration and ASTM E1646

In addition to air leakage, water leakage in roofing systems is obviously not desired. To test the performance of metal roofing products in this regard, ASTM E1646 titled “Standard Test Method for Water Penetration of Exterior Metal Roof Panel Systems by Uniform Static Air Pressure Difference” is the norm. This standard laboratory test is not based solely on free running water, but on water “applied to the outdoor face simultaneously with a static air pressure at the outdoor face higher than the pressure at the indoor face, that is, positive pressure”. This pressurized testing is intended to simulate wind-driven rain and flowing water that can build a head as it drains. The test measures the water-resisting properties of the roofing in the field of the roof panels including panel side laps and structural connections. Just like air testing, it does not include leakage at openings, perimeters, or other roofing detail areas.

The test method itself consists of “sealing and fixing the test specimen into or against one face of a test chamber, supplying air to or exhausting air from the chamber at the rate required to maintain the test pressure difference across the specimen, while spraying water onto the outdoor face of the specimen at the required rate and observing any water leakage”. Hence, it requires the air and water to be supplied simultaneously and for the testers to observe and document the rate of water leakage under the test conditions.

The test parameters typically require at least 20 gallons of water per hour (gal/hr) overall with between 4 – 10 gal/hr in any quarter section of the tested specimen, all at specified air pressure differentials. Given that this is a fairly stringent test, it is fair to say that metal roofing that holds up under these test conditions will likely perform well under most weather conditions when installed on a building. Typically, manufacturers have developed metal roofing products with seaming and connection methods that allow them to pass this test with virtually no observable water penetration.

To find out more about the tested results of metal roofing products you may be considering, contact your local MBCI representative or see the MBCI website and select the “testing” tab under a selected product.

Standard Testing for Metal Roofing – Part 1: Structural Performance and Uplift Resistance

When selecting a metal roofing product, there is an expectation that it will perform as intended over the life of the building. But what assures building owners, code officials, or design professionals that a product will in fact perform as promised? This question often comes up in building product discussions and the accepted way to answer it is to subject the products to physical testing. The type of testing is usually very specific to the product based on protocols and procedures developed by independent agencies such as Underwriters Laboratories (UL), ASTM International, or others. Manufacturers typically submit their products to independent testing labs who follow these standard test procedures. Once testing has concluded, they report the results back to the manufacturer. These results then show whether the product meets stated performance criteria or not. If not, the manufacturer can re-design and re-test until it does and then make the final results available to the public.

For metal roofing, a series of relevant and important tests are typically performed. In this blog, we will look at two of them related to structural performance and wind uplift.

ASTM E1592

The structural integrity of metal roofing is crucial given the various natural forces that can be imposed on the materials. Effects from wind, snow, or other conditions can compromise its integrity. Accordingly, the ASTM Committee E06 on Performance of Buildings (including sub-committee E06.57 on Performance of Metal Roof Systems) has developed ASTM E1592 “Standard Test Method for Structural Performance of Sheet Metal Roof and Siding Systems by Uniform Static Air Pressure Difference”. While the standard acknowledges the use of computation (i.e. calculations) to determine the basic structural capacity of most metal products, it also points out that some conditions are outside of the scope of computational analysis and hence need to be tested.

The standard describes a test method with “optional apparatus and procedures for use in evaluating the structural performance of a given (metal) system for a range of support spacings or for confirming the structural performance of a specific installation”. As such, it is very specific both to metal roofing and its installation. This test method uses imposed air pressure not to look at air leakage but simply to determine structural reactions. It consists of three steps:

1. Sealing the test specimen into or against one face of a test chamber

2. Supplying air to, or exhausting air from, the chamber at the rate required to maintain the test pressure difference across the specimen

3. Observing, measuring, and recording the deflection, deformations, and nature of any failures of principal or critical elements of the panel profile or members of the anchor system

The test needs to be performed with enough variation to produce a load deformation curve of the metal and account for typical edge restraint (fastening) representative of field conditions.

Manufacturers need to submit different products that are tested at least once at two different span lengths between supports. Standing seam roof panels are typically tested at a 5’-0” and 1’-0” span. Spans between the two tested spans can be interpolated. The result is a table of tested loading results that can be compared to code required or engineered design loading to then determine if the selected material and spacing are adequate for the project needs or if another product or spacing is needed.

MBCI's metal roofing products undergo a series of tests to ensure maximum resistance and performance.
MBCI’s metal roofing products undergo a series of tests to ensure maximum resistance and performance.

UL 580

The ASTM E1592 test is focused on the structural integrity of metal panels. It also uses positive and negative air pressure in a static (i.e. non-moving) condition to determine performance. There is also a separate concern about how metal roofing will perform in a dynamic condition as would be expected in a windy condition where wind gusts can ebb and flow erratically. In that regard, a separate test developed jointly between Underwriters Laboratories (UL) and the American National Standards Institute (ANSI) looks at the ability of roofing to resist being blown off a building due to wind. Known as ANSI/UL 580 “Standard for Tests for Uplift Resistance of Roof Assemblies”, it has become the recognized means to identify and classify the suitability of roofing for different wind conditions – low to high.

This test is also specific in its scope and intent stating that it “evaluates the roof deck, its attachment to supports, and roof covering materials”. It also points out that it is not intended to test special roof conditions, main or secondary structural supports, or deterioration of roofing. The standard prescribes in considerable detail the type of test chamber that needs to be constructed and used for the testing which includes three sections: “a top section to create a uniform vacuum, a center section in which the roof assembly (i.e. deck, attachment, and roofing) is constructed, and a bottom section to create uniform positive pressure”. The test procedure is then based on placing the roof assembly into the test chamber and subjecting it to a prescribed sequence of 5 phases of oscillating positive and negative pressure cycles (simulating dynamic wind conditions) over 80 minutes of total testing.

There are four wind uplift classifications obtainable for a tested assembly based on the test assembly retaining its attachment, integrity and without any permanent damage. These include Class 15, Class 30, Class 60, and Class 90. Each class has its own requirements for test pressures with increasing pressure as the class number increases. Higher class numbers indicate increasing levels of wind uplift resistance. Note, that to obtain a Class 60 rating, the tested assembly must pass the Class 30 test then be immediately subjected to the Class 60 test sequence. Similarly, to obtain a Class 90 rating, the tested assembly must first pass both the Class 30 and 60 tests. Metal roofing manufacturers who want their roofing products tested and classified under UL 580 must pair them with standard roof deck and fastening materials. Hence most have many different tests performed and results reported accordingly.

When reviewing metal roofing options, it is comforting to know that most manufacturers have tested their products and designed them to meet or exceed minimum requirements. To find out more about tested results of products you may be considering, contact your local MBCI representative or see the MBCI website and select the “testing” tab under a selected product.

Metal Roofing Toughs Out the Storm

Did you know that roof failures are the largest hurricane loss due to wind and water damage? Metal roofing is highly recommended for the locations that deal with hurricanes and high force winds as well as other weather conditions including hail, fire and ice. Metal roof panels from MBCI are designed to meet the unique needs of Florida home and business owners.

Able to resist and withstand the extreme environmental conditions that Florida is known for, MBCI’s metal wall panels and roofing systems offer better long-term cost benefits and lasting up to three times longer than asphalt shingles. With Miami-Dade County’s strict product approval and testing processes in place, you can have peace of mind that metal panels from MBCI meet requirements.

Roofing
MBCI’s standing seam metal roof systems are one of the most durable and weathertight roof systems available in the industry.

Miami-Dade County Approvals

In order for your metal panels to be compliant for structures in Miami-Dade County, all panels for both roof and walls are tested to specific test standards. In addition to submitting an application, test reports are also required to move forward with the approval process. Third-party testing is required for verification.

Metal Building Panel Approval Process

Prior to submitting a metal building for approval, multiple steps must be taken to configure and test your panels. Each unique panel configuration requires its own testing.

Approval for a product is based on one profile, one gauge and several spans. The design pressures can be used in the field, corners and perimeters or interior and end zones. If a panel manufacturer offers the same panel profile in a thicker gauge, that material can be included in the approval, but they will be limited to the design pressure of the thinner gauge. Three samples of each configuration must be tested and differ no more than 20% when results are determined. The end goal of testing is to determine design loads for the panel system at a specific span.

There are separate requirements for the testing and approval of structural steel members and frames.

Why Install MBCI Metal Panels

  • UL 580 Class 90 Wind Uplift Resistance
  • Designed for Florida
  • UL Class 4 Hail Impact Resistant
  • Class A Fire Ratings
  • ENERGY STAR® Certified Colors
  • Miami-Dade County Approved
  • Insurance Discounts Available

Miami-Dade County Approved Panels

Florida has implemented stricter building codes to help prevent hurricanes and wind loss. Some of the toughest codes include Miami-Dade County and Florida Building Code. MBCI offers a wide selection of products that surpass the necessary ratings. Our Miami-Dade approved panels include PBR, 5V Crimp, Craftsman™ Series – Small Batten, DoubleLok®, CFR and most insulated metal panels. For more information on MBCI’s metal roofing and wall products, speak to your sales representative or visit our website at MBCI.com.

Quality Control Accreditation Programs for Metal Roofing Products

Performance-based building product testing and accreditation is a critical piece of just about every aspect of construction—affecting everyone from the manufacturer to the installer and ultimately to the owner and occupant. These certifications ensure real-world property loss will be prevented and provides protection when certified products are installed correctly.

With roofing being such a vital part of any building project, roofing manufacturers must take certifications for roofing products (in this case, metal roofing products) very seriously. Below, we’ll give a brief overview of the main certifications that we—and other metal roofing companies—test to and are audited for in order for the overseeing bodies to confirm that we’re producing what we’re testing it to. In the simplest terms, these specifications, such as UL or FM, will give the contractor peace of mind that he or she can provide what is spec’d.

At MBCI, we have several certifications through which we have ratings. These include:

1. UL (Underwriters Laboratories).

UL certifies roofing materials and roof assemblies for fire performance, hail resistance and/or resistance to wind uplift. Roof deck assemblies are investigated for performance under internal fire exposures and for uplift resistance. MBCI does a good deal of testing and we have UL constructions for many of our roofing products. We get the UL construction number, impact ratings and fire ratings. UL does quarterly audits in the manufacturing areas to make sure that we’re producing the panels the way we test.

2. IAS (International Accreditation Service) certification.

IAS accreditation programs are based on recognized national and international standards that ensure acceptance of its accreditations. To meet this standard, MBCI is “Part B” of the process, as we are responsible for the components. The auditor comes in to certify that we do what we say we do. Once IAS accreditation requirements are met, the company receives a certificate of accreditation.

3. FM (Factory Mutual) approvals.

MBCI has three roofing products that are FM approved for wind uplift standards, hail resistance, internal and external fire ratings. For each, we test the product and FM comes out yearly to do an audit.

Accreditation
This is an example of FM wind uplift testing.

4. Dade County roofing product approvals.

Miami-Dade and Broward Counties are classified as High Velocity Hurricane Zones (HVHZ), which are rated as 150 mph plus winds. It is Florida’s highest rating. An updated testing approval process has been instituted for building products and materials used in these counties. The purpose is to mitigate damage caused by wind-borne debris resulting from hurricane-force winds. MBCI does testing and this stringent certification is applicable for anything that ships into Dade County or Broward County in Florida. Product Notice of Acceptance can be located on the Miami-Dade website for roof and wall panel systems that are Dade County approved.

Safety and performance are the most important goals. All in all, these certifications ensure that we, the manufacturer, are doing our job and that customers are getting everything they’re paying for. For more information on MBCI’s product testing, please contact a sales representative.

Five Retrofit Choices Using Metal Roofing Systems

Buildings usually need new or replacement roofing installed at some point during their service lives. New metal roofing is an ideal roofing retrofit option due to its longevity and durability, which can extend the life of the roofing and require fewer replacements over time. The aesthetic appearance of a new metal roof can also make a notable visual impact to upgrade the building itself.

When considering such a metal roof retrofit on an existing building, the first thing to realize is that there are a number of choices available. Here is a quick look at five of the most common ones that can be selected from and tailored to suit a particular building. Note that since all of them will add some structural loading to the roof, all the retrofit solutions should be reviewed by a professional structural engineer to be sure the existing building can accommodate the changes.

1. Double-Lok® Clip System

When an existing building has an existing PBR roof panel or similar, a Double-Lok® clip and panel system can be installed directly over the existing roof with minimal alterations. In this case, 2″ standoff clips are run from eave to ridge and fastened through the existing roofing panels down into the existing purlins. Then new standing seam metal roofing panels are installed along these clips so they are held 2″ above the purlins and 3/4″ above the major ribs of the existing panel roof. Because of these clearances, the cavity between the old and new roofs can either be vented or additional insulation can be added. Venting the cavity can be a good option when the existing roof slope is 3:12 or greater, as this allows for convective air flow during the summer and can help reduce the chance of ice damming in the winter. For any slopes of 1/2: 12 or greater, adding insulation can improve the overall thermal performance of the building. Generally, this system allows for considerable versatility, even if it takes more parts and labor than some other solutions.

2. Retrofit Roof Panels Over Existing

For cases where a standoff isn’t sought, new, non-structural metal roof panels with a specifically retrofit profile can be installed directly over existing roof panels on roof slopes of 1/2: 12 and greater. That means there is no need to tear out the old roof, since the new panels are through-fastened into the old ones and the purlins below, all in a pattern that avoids the original fasteners. Such retrofit panels are available in 29 and 26 gauge in full range of colors and come with a factory-applied vapor barrier on the underside. Even light-transmitting panels are available for this retrofit panel system.

Retrofit
5 most common choices for retrofit metal roofing systems

3. Notched Sub-Purlins

A variation on the metal-over-metal roofing approach is to use specifically designed z-purlins with notch-outs that are screwed down to the existing purlins. Unlike other systems that run retrofit support members from the eave to the ridge, the notched purlins run parallel to both (in line with existing purlins) with the notches spaced to clear the ribs or corrugations in the existing metal roofing. Profiles are available to match virtually any metal roof produced in the last 50 years. That means they can be installed over existing roofing and, in the process, provide enhanced structural capabilities because of the added sub-purlins.

4. Grid System

When an existing purlin spacing doesn’t meet current code requirements, then the use of crisscrossing hat sections in a grid pattern can provide the additional support needed. Such grid systems are designed to go directly over existing sloped roof systems but many require the use of specific metal roofing panels to work properly.

5. New Framed Roof System

In some cases, a full, steep-sloped roof (greater than 4:12) is sought to be installed over a low-slope roof (1/4:12 – 4:12). In this case, a full metal framing system is available that will create the desired roof slope and transfer the new roof weight to the existing roof deck above the existing roof structural members. As such, the coordination of the new system with the existing roofing, insulation and structure needs to be addressed by licensed engineers. Once designed and installed, an “attic space” will be created by the new retrofit roof system, which should include proper venting in accordance with applicable codes, allowing trapped moisture to escape. It is also recommended that such “attic space” be reviewed by other building, fire, or insurance-related officials for possible sprinkling or extension of existing fire walls to the bottom of the “new” roof system. Regardless, a minimum of 3″ vinyl-faced roll insulation between the retrofit panels and the retrofit purlins will help prevent condensation and roof noise in addition to improving energy efficiency.

To find out more about which retrofit options, or options, are best suited to a particular building that you are involved with, contact your local MBCI representative.

Air Leakage and Water Penetration Testing of Metal Roof and Wall Panels

Metal roof and wall panels have many test standards they must meet under certain environmental conditions. Test standards that are specified for metal panels in our industry are ASTM E283 (air leakage) and ASTM E331 (water penetration) for wall panels, and ASTM E1680 (air leakage) and ASTM E1646 (water penetration) for roof panels. While the corresponding tests are similar, the orientation of the panels is a little different for the wall and roof panels. Here we’ll take a brief look at these testing protocols and what they mean for the integrity of the metal panel system at hand.

For air leakage tests, the protocol has been to test at a specified pressure. It should be noted that some manufacturers have changed it from the standard as many in the market are testing at a higher pressure. And while it’s true that you are going to have air pass through, you want the air to be minimized. Air leakage is tested in terms of cubic feet per minute, with a lower number indicating a better, more efficient product. For water penetration testing, water is sprayed and is tested for the water getting through the seam or side lap of the panel system.

Testing
The purpose of air leakage and water penetration testing is to establish air and water infiltration rates on the referenced test specimen in accordance with ASTM E283 and ASTM E331.

Metal Wall Testing Standards

As indicated above, the wall test standards are: ASTM E283 (Standard Test Method for Determining Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen) and ASTM E331 (Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference).

The procedure for ASTM E283 is as follows: 1. Seal off test unit and measure air leakage (extraneous leakage); 2. Unseal test unit, then re-measure (total system); 3. Subtract extraneous air from total air = Performance.

According to ASTM, this test method is a “standard procedure for determining the air leakage characteristics under specified air pressure differences at ambient conditions.” Furthermore, the air pressure differences across a building envelope can have significant variation with numerous factors acting to affect air pressure differences relative to the particular building environment. For instance, the test method described is for tests with constant temperature and humidity across the specimen. These factors should be considered when specifying the test pressure differences to be used.

Additionally, rates of air leakage are sometimes used for comparison purposes but these comparisons would only be valid if the tested/compared components are of essentially the size, configuration, and design.

Using a Pass/Fail criteria, “Pass” results of this test indicated that water did not penetrate through control joints in the exterior wall envelope, joints at the perimeter of openings, or intersections of terminations.

The laboratory test procedure for ASTM E331 dictates that the test is conducted for a specified duration with water applied at 5.0 gal/ft 2 hr. at a specified pressure. The test has applied pressure and water spray for a period of 15 minutes.

According to ASTM, this test method is a “standard procedure for determining the resistance to water penetration under uniform static air pressure differences.” Furthermore, in applying the results of tests by this test method, ASTM points out that “the performance of a wall or its components, or both, may be a function of proper installation and adjustment. In service, the performance will also depend on the rigidity of supporting construction and on the resistance of components to deterioration by various causes, vibration, thermal expansion and contraction, etc.,” noting that exact simulation of real-world wetting conditions can be difficult (i.e., large wind-blown water drops, increasing water drop impact pressures with increasing wind velocity, and lateral or upward moving air and water) – and that it may depend to some degree on the design.

Metal Roof Test Standards

The Roof Test Standards are ASTM E1680 (Standard Test Method for Rate of Air Leakage Through Exterior Metal Roof Panel Systems) and ASTM E1646 (Standard Test Method for Water Penetration of Exterior Metal Roof Panel Systems by Uniform Static Air Pressure Difference).

According to ASTM, test method E1680 covers the determination of the resistance of exterior metal roof panel systems to air infiltration resulting from either positive or negative air pressure differences. The test method described is for tests with constant temperature and humidity across the specimen. (This test method is a specialized adaption of Test Method E283.)

ASTM literature explains that variables such as the slope of the roof and other factors can affect air pressure differences and, therefore, affect the implications of the resulting air leakage relative to the environment within buildings. Just as with wall panels discussed earlier, these factors need to be taken into consideration when specifying the test pressure difference to be used.

ASTM describes its E1646 test method as a “standard procedure for determining the resistance to water penetration under uniform positive static air pressure differences, and simulates win driven rain imposed on sidelaps and rain that is free to drain while building a water head as it flows.” For this test method, the slope of the roof is a significant factor.

According to ASTM, this test method covers the determination of the resistance of exterior metal roof panel systems to water penetration when water is applied to the outdoor face simultaneously with a static air pressure at the outdoor face higher than the pressure at the indoor face, that is, positive pressure. (This test method is a specialized adaption of Test Method E331.)

To learn more about MBCI wall and roof panels, please visit www.mbci.com.

Texas Department of Insurance Windstorm Inspection Program

Are you involved with a building project along the Gulf Coast of Texas in which metal roofing or siding is involved? If so, obtaining a building permit may be subject to compliance with the Texas Department of Insurance (TDI) Windstorm Inspection Program. Here is some information that can help.

What is the TDI Windstorm Inspection Program?

In 1987, the Texas Legislature enacted HB 2012 with a requirement to mitigate losses to structures due to hurricanes along the Texas Gulf Coast. On January 1, 1988, the Texas Department of Insurance (TDI) began administrating the Windstorm Inspection Program in support of this legislation. The program is centered in Austin, with four other field offices also located along the Gulf Coast.

Where does the TDI Windstorm Inspection Program apply?

The Windstorm Inspection Program applies to all commercial and residential structures located primarily along the Gulf Coast of Texas. TDI has designated specific areas as catastrophe areas, also known as Texas’ First Tier Countries. The affected countries include Aransas, Brazoria, Calhoun, Cameron, Chambers, Galveston, Jefferson, Kenedy, Kleberg, Matagorda, Nueces, Refugio, San Patricio, Willacy and certain cities east of State Highway 146 in Harris County (La Porte, Morgan’s Point, Pasadena, Seabrook, Shoreacres).

Designated Catastrophe Areas
Designated Catastrophe Areas

What is the Texas Windstorm Insurance Association?

The designated catastrophe areas often use Texas Windstorm Insurance Association (TWIA) as the insurer of last resort for the wind and hail portion of their building insurance. To qualify for wind and hail insurance through TWIA, all new structures plus any alterations, additions, or repairs to existing structures (including re-roofs or roof repairs) located in the designated catastrophe areas must be constructed and inspected according to the building specifications adopted by TDI.

How are Building Permits Affected?

All building work needs to meet the requirements of the adopted building codes in Texas (currently the 2006 version of the International Building Code and the International Residential Code). However, in addition to the codes, the TDI requirements must also be complied with in the designated countries. This is similar to other parts of the country that experience severe weather events (e.g., Dade County, Florida) where additional requirements above the code have been instituted for safety reasons. At the time of building permit application, evidence will need to be shown of TDI compliance in design documents; therefore, many times the local TDI office is contracted first and an application is submitted (Form WPI-1). Then, during construction, a TDI certified inspector (usually an engineer) will inspect the work, as will the regular building inspectors. Compliance will need to be shown with the TDI requirements (Form WPI-8) in order to obtain final sign off and a Certificate of Occupancy.

What Building Products are Approved for Use?

In order to be compliant with TDI standards, building products must be independently tested and shown to be able to withstand different levels of severe weather. For products like metal roofing and siding, the testing needs to include the method of attachment and the substrate type (metal, wood, etc.). Product evaluations are available by product type (such as “Exterior Coverings” for metal siding or “Roof Coverings” for metal roofing) and then by manufacturer all by either contacting a local TDI field office or on TDI’s website: www.texas.gov/wind/prod/index

For more information on this program visit http://www.tdi.texas.gov/wind/index.html or email [email protected]. To find out more about metal roofing and siding products that meet the severe weather requirements, contact your local MBCI representative.

 

Proper Cutting and Cleaning of Metal Building Panels

Metal building panels, whether for roofing or walls, are manufactured with a long-lasting and durable finish of different types and in many colors, allowing the panels to hold up and look great for decades. However, once they get to the building they may need to be cut to fit a field condition, or they may need to be cleaned either during or after installation for any number of reasons. Innocently doing either, without understanding that doing it the wrong way could compromise the integrity of the finish, can be disconcerting at best or warranty-buster at worst. Here are a few tips for the proper cutting and cleaning of metal panels.

Cutting Metal Panels:

Field cutting of panels is certainly allowed and acceptable to manufacturers and is common, particularly at framed openings. However, there are two things to pay attention to here:

  • Cutting Method: If field cutting is required, the panels must be cut with nibblers, snips or shears to prevent edge rusting. Do not cut the metal panels with saws, abrasive blades, grinders or torches. Abrasive saw blades, grinders and torches can leave irregular or rough edges that are no longer coated or finished, thus causing rust and corrosion.
Metal
Corrosion on this panel edge is due to an abrasive saw blade cut.
  • Cutting Location: All cutting of metal will produce fine particles, or swarf, that will fall from the cut. If this swarf falls on the roof, it can cause permanent staining and, if enough of it accumulates in one place, it could rust completely through the metal roof panel. Therefore, never cut metal panels on the roof or over other metal panels. It is best to cut the panel down on the ground where the swarf can be captured and disposed of.
Metal
Accumulated swarf from cutting is staining this metal panel.

Cleaning Metal Panels:

Metal panel manufacturers will usually provide information and directions for cleaning. A typical set of cleaning recommendation follows, based on a progression of cleaning levels—start with number 1 and work your way down the list for tougher jobs.

  1. For simple cleaning, water and mild detergent will often be all that is needed. However, bleach should never be used, since it can change the finish color or interact disastrously with certain metals.
  2. For water-soluble dirt or other deposits requiring more complete cleaning, a solution of hot or cold water mixed with detergent is appropriate. In a container of water, use a 5 percent solution of commonly used commercial (non-industrial, non-bleach) mild detergent, so as not to have any deleterious effect on the painted metal surface. Use a cloth or a soft-bristle brush for application of the cleaning solution, followed by an adequate rinse with clean water. Alternatively, pressure-washing with a 40° tip is also an option.
  3. For non-water-soluble deposits such as tar, grease, oil and adhesives, a solvent or alcohol-based cleaner may be required. In this case, since most organic solvents are flammable and/or toxic, they must be handled accordingly. Generally, keep them away from open flames, sparks and electrical motors. Use adequate ventilation, protective clothing and goggles, and read the manufacturer’s Material Safety Data Sheet (MSDS) of any solvent used for any other specific safety details. The following are among the cleaners recognized by manufacturers for this type of non-water-soluble cleaning:
    1. Alcohols
      1. Denatured alcohol (ethanol)
      2. Isopropyl (rubbing alcohol)
    2. Solvents
      1. VM&P naptha
      2. Mineral Spirits
      3. Kerosene
      4. Turpentine (wood or gum spirits)

Regardless of the level of cleaning required, never use wire brushes, abrasives, or similar tools that will abrade the surface coating and leave scratches or other finish damage and lead to corrosion. Further, keep in mind that any misuse or abuse of any of the acceptable cleaning agents will automatically void any manufacturer’s warranty for the affected surfaces.

By using the tips above to properly cut and clean metal panels, installers can avoid the problems of corrosion, staining or other surface damage. Thus, the integrity and beauty of the finish is maintained without any impact on the warranty. To learn more about metal panel finishes, cutting, cleaning and warranties, contact your MBCI representative.

How to Retrofit Existing Roofs with New Metal Roofing Systems

In our prior blog post, Benefits of Roofing Retrofits with Metal Roofing Systems, we looked at the benefits associated with retrofitting an existing building with a new metal roofing system. In this discussion, we will look at several ways to do it.

New Sloped Roof Over an Existing Flat Roof

Buildings with flat roofs can be retrofitted with light-gauge steel framing systems to create a new sloped metal roof. Such systems can be installed directly over existing roofing membranes and structures, subject to appropriate structural engineering review. These systems typically use light-gauge (16 gauge to 12 gauge) steel framing installed directly above the existing roof to create a sloped plane. Regardless whether the existing roof structure is steel, wood or concrete, the new, lightweight framing system can be designed to disperse roof loading appropriately and connect securely.

The physical footprint of the existing roof, the type of framing system employed, and any special rooftop conditions will typically control the final geometry of the new sloped roof. A low-slope application (less than 2:12) can be selected based on economy and configured to discharge rainwater off of the roof. High-slope applications (greater than 2:12) are typically selected to improve and update the look of an existing building while improving long-term performance. Once the metal framing system is in place, then standing seam metal roof panels are commonly installed, creating a ventilated attic space in the process.

Retrofit Roofing Panels

Low-slope metal roofing can be a great choice when a fairly utilitarian solution is needed for improving overall roofing performance. Exposed fastener systems can be used to allow direct installation of the new roofing panels over existing metal roofing or some other materials. Roofing panels specifically designed for retrofit applications typically have a rib spacing of 12″ on center with a rib height of just over an inch. The minimum slope for such a panel is 1/2:12. Any existing lap screws must be removed from the existing roof before the new panels are installed. The new retrofit panels are then attached with screws that fasten through the existing panel major ribs and into the existing purlins.

A New Standing Seam Roof

In some cases, an existing sloped roof may have another roofing material in place that is nearing the end of its service life. In that case, a new long-lasting, standing seam metal roofing system can be installed directly over the existing roof. Some systems will require a simple sub-framing system that allows the new roof to be installed directly over the existing. Retrofit roofing systems such as this can be UL-90 rated and FM Global rated. Other strategies exist to increase the energy efficiency of the building when adding new standing seam roofing, such as adding unfaced fiberglass insulated between the existing and the new roof and to vent the cavity between the old and new roofs by adding vent strips at the eaves, plus a vented ridge to allow air intake and exhaust. This method works well with roof slopes of 3:12 or greater.

Retrofit
OST Trucking Co. featuring Retro-R® metal panels in Polar White.

End Results

Regardless of the specific system selected and designed, installing a retrofit metal roofing system allows the existing roof to remain in place, which saves on labor costs. It also minimizes the chance for water entry into the building during the roofing process and provides for a safer working environment. Existing rooftop equipment, vents, or light-transmitting panels can be accommodated by any of the systems described.

According to the Metal Construction Association (MCA), “retrofit metal roofing represents an economical and functional solution for building owners who want to beautify their existing structure or correct performance issues related to aging roofs and out-of-date materials. They have been employed in millions of square feet of existing commercial, industrial, retail and education facilities. The result is a new code-compliant metal roof that will last for 60-plus years, providing higher energy efficiency by reducing heat gain through the roof in summer months and reducing heat loss during winter months.”

To find out more about these retrofit systems, contact your local MBCI representative.

Find a sales representative