Texas Department of Insurance Windstorm Inspection Program

Are you involved with a building project along the Gulf Coast of Texas in which metal roofing or siding is involved? If so, obtaining a building permit may be subject to compliance with the Texas Department of Insurance (TDI) Windstorm Inspection Program. Here is some information that can help.

What is the TDI Windstorm Inspection Program?

In 1987, the Texas Legislature enacted HB 2012 with a requirement to mitigate losses to structures due to hurricanes along the Texas Gulf Coast. On January 1, 1988, the Texas Department of Insurance (TDI) began administrating the Windstorm Inspection Program in support of this legislation. The program is centered in Austin, with four other field offices also located along the Gulf Coast.

Where does the TDI Windstorm Inspection Program apply?

The Windstorm Inspection Program applies to all commercial and residential structures located primarily along the Gulf Coast of Texas. TDI has designated specific areas as catastrophe areas, also known as Texas’ First Tier Countries. The affected countries include Aransas, Brazoria, Calhoun, Cameron, Chambers, Galveston, Jefferson, Kenedy, Kleberg, Matagorda, Nueces, Refugio, San Patricio, Willacy and certain cities east of State Highway 146 in Harris County (La Porte, Morgan’s Point, Pasadena, Seabrook, Shoreacres).

Designated Catastrophe Areas
Designated Catastrophe Areas

What is the Texas Windstorm Insurance Association?

The designated catastrophe areas often use Texas Windstorm Insurance Association (TWIA) as the insurer of last resort for the wind and hail portion of their building insurance. To qualify for wind and hail insurance through TWIA, all new structures plus any alterations, additions, or repairs to existing structures (including re-roofs or roof repairs) located in the designated catastrophe areas must be constructed and inspected according to the building specifications adopted by TDI.

How are Building Permits Affected?

All building work needs to meet the requirements of the adopted building codes in Texas (currently the 2006 version of the International Building Code and the International Residential Code). However, in addition to the codes, the TDI requirements must also be complied with in the designated countries. This is similar to other parts of the country that experience severe weather events (e.g., Dade County, Florida) where additional requirements above the code have been instituted for safety reasons. At the time of building permit application, evidence will need to be shown of TDI compliance in design documents; therefore, many times the local TDI office is contracted first and an application is submitted (Form WPI-1). Then, during construction, a TDI certified inspector (usually an engineer) will inspect the work, as will the regular building inspectors. Compliance will need to be shown with the TDI requirements (Form WPI-8) in order to obtain final sign off and a Certificate of Occupancy.

What Building Products are Approved for Use?

In order to be compliant with TDI standards, building products must be independently tested and shown to be able to withstand different levels of severe weather. For products like metal roofing and siding, the testing needs to include the method of attachment and the substrate type (metal, wood, etc.). Product evaluations are available by product type (such as “Exterior Coverings” for metal siding or “Roof Coverings” for metal roofing) and then by manufacturer all by either contacting a local TDI field office or on TDI’s website: www.texas.gov/wind/prod/index

For more information on this program visit http://www.tdi.texas.gov/wind/index.html or email [email protected]. To find out more about metal roofing and siding products that meet the severe weather requirements, contact your local MBCI representative.

 

Planning for Metal Roofing Retrofits

The decision to retrofit an existing commercial roof with a new metal one is usually based on the very real appeal of creating a long-term (50-60 years) roofing solution, achieving better energy efficiency, creating better aesthetics, or all of the above. Prior blog posts discussed these benefits in more detail and talked about different types of metal roofing retrofits. Here, we will focus on where to start in terms of planning to undertake a roofing retrofit based on covering a membrane roof with a metal-framed, low-slope, metal roofing system.

Existing Building Assessment

A successful retrofit is based on the new metal roof system working with the existing building structure and local conditions. Each of the following should be looked at first when starting the planning and design process:

  • Existing Roof Geometry: The shape (length and width) of an existing roof is important to determine the square footage of the roof, but so are the actual dimensions, since those can impact the height of the new metal roofing. The minimum recommended slope for new roofs is between ¼:12 and 3:12 , depending upon the roof system chosen for the new roof. Existing roof details such as overhangs, parapets, and the existing roof slope itself all need to be documented in order to determine how best to address them with the retrofit system.
  • Existing Roof Type: In many cases, the existing roofing does not need to be removed, but there may be ballast such as stone or other materials that are no longer needed. Oftentimes, the removal of this ballast will compensate for the additional weight of the new roof and framing system. The materials of the existing roof may also pose compatibility issues with new materials, so they should be documented to plan accordingly.
  • Existing Roof Substrate: Under the existing roofing, some type of substrate material is holding it up. It may be rigid insulation resting on a metal, wood, or concrete deck, or it may be an uninsulated substrate that has insulation below it. The specifics here need to be established, since the new metal framing will need to connect through this material. If insulation is in fact part of the substrate, then its effectiveness should be determined—has it gotten wet and been compromised, or is it still in good usable condition? Either way, how much is there?
  • Existing Roof Structure: The structural system of the building includes framing or other components that support the roof. This is what the new metal framing will anchor to and transfer structural loads to. Hence, the specifics in terms of type (steel joists, concrete beams, wood joists, etc.), the size, and the spacing are critical. Further, the carrying capacity of this system should be assessed and analyzed by a structural engineer, since the retrofit system will add 2 to 4 pounds per square foot of dead load to the roof structure. Further, this weight, plus any live loads from the roof, will typically not be distributed uniformly, but in a series of point loads. Therefore, the engineered capacity of the existing structure needs to be known to determine if any structural enhancements are needed.
  • Existing Roof Equipment: Many commercial buildings use the roof to locate mechanical, electrical, or elevator equipment. In some cases, that equipment can be moved to the ground or elsewhere, but in other cases it can’t, or would be too costly to consider. Hence the details, location, and height of such equipment needs to be known so a determination can be made on whether it can be covered and enclosed in the “attic” of the retrofit system, or if it will need to be raised to the top of the new roof.

New Retrofit Roofing Goals

With an assessment of the existing conditions in hand, the focus now becomes identifying the primary objectives of the new roof. These should be clearly articulated so the final design can address and include each of them:

  • Appearance: What is being sought in terms of shape, height, visibility, color, improved curb appeal, or other visual considerations?
  • Performance: What is the new roof being asked to address related to operations or performance issues? Common elements could be improved drainage, less maintenance, greater longevity, or more resistance to damage.
  • Energy Efficiency: Replacing a roof is the ideal time to improve energy efficiency in a building by adding new or more insulation. This could be done simply to meet current energy code requirements or to contribute to an overall energy-use reduction project at the building. In some cases, the new roofing system could enhance the ability to include energy generation, such as solar panels mounted to the new roofing system.

With proper planning and goal setting, a metal retrofit system can meet or exceed all expectations. This was the case recently at a water treatment facility in Dallas, Texas. Here is a photo of the existing built-up roof that was experiencing problems and needed replacement. It was assessed, analyzed and determined to be an excellent candidate for a retrofit metal roofing system.

Retrofits

 

Metal Roofing Retrofits
Here is a photo of the light-gauge metal framing installed to create the new low-slope planes and transfer loading to the existing building structure.

 

Planning for Retrofits
And, finally, here is the completed metal roofing, which looks better and is expected to perform better than the original roofing.

 

To learn more about MBCI retrofit metal roofing systems and how they might work on a building you are involved with, visit http://www.mbci.com/products/retrofit-products/.

Proper Cutting and Cleaning of Metal Building Panels

Metal building panels, whether for roofing or walls, are manufactured with a long-lasting and durable finish of different types and in many colors, allowing the panels to hold up and look great for decades. However, once they get to the building they may need to be cut to fit a field condition, or they may need to be cleaned either during or after installation for any number of reasons. Innocently doing either, without understanding that doing it the wrong way could compromise the integrity of the finish, can be disconcerting at best or warranty-buster at worst. Here are a few tips for the proper cutting and cleaning of metal panels.

Cutting Metal Panels:

Field cutting of panels is certainly allowed and acceptable to manufacturers and is common, particularly at framed openings. However, there are two things to pay attention to here:

  • Cutting Method: If field cutting is required, the panels must be cut with nibblers, snips or shears to prevent edge rusting. Do not cut the metal panels with saws, abrasive blades, grinders or torches. Abrasive saw blades, grinders and torches can leave irregular or rough edges that are no longer coated or finished, thus causing rust and corrosion.
Metal
Corrosion on this panel edge is due to an abrasive saw blade cut.
  • Cutting Location: All cutting of metal will produce fine particles, or swarf, that will fall from the cut. If this swarf falls on the roof, it can cause permanent staining and, if enough of it accumulates in one place, it could rust completely through the metal roof panel. Therefore, never cut metal panels on the roof or over other metal panels. It is best to cut the panel down on the ground where the swarf can be captured and disposed of.
Metal
Accumulated swarf from cutting is staining this metal panel.

Cleaning Metal Panels:

Metal panel manufacturers will usually provide information and directions for cleaning. A typical set of cleaning recommendation follows, based on a progression of cleaning levels—start with number 1 and work your way down the list for tougher jobs.

  1. For simple cleaning, water and mild detergent will often be all that is needed. However, bleach should never be used, since it can change the finish color or interact disastrously with certain metals.
  2. For water-soluble dirt or other deposits requiring more complete cleaning, a solution of hot or cold water mixed with detergent is appropriate. In a container of water, use a 5 percent solution of commonly used commercial (non-industrial, non-bleach) mild detergent, so as not to have any deleterious effect on the painted metal surface. Use a cloth or a soft-bristle brush for application of the cleaning solution, followed by an adequate rinse with clean water. Alternatively, pressure-washing with a 40° tip is also an option.
  3. For non-water-soluble deposits such as tar, grease, oil and adhesives, a solvent or alcohol-based cleaner may be required. In this case, since most organic solvents are flammable and/or toxic, they must be handled accordingly. Generally, keep them away from open flames, sparks and electrical motors. Use adequate ventilation, protective clothing and goggles, and read the manufacturer’s Material Safety Data Sheet (MSDS) of any solvent used for any other specific safety details. The following are among the cleaners recognized by manufacturers for this type of non-water-soluble cleaning:
    1. Alcohols
      1. Denatured alcohol (ethanol)
      2. Isopropyl (rubbing alcohol)
    2. Solvents
      1. VM&P naptha
      2. Mineral Spirits
      3. Kerosene
      4. Turpentine (wood or gum spirits)

Regardless of the level of cleaning required, never use wire brushes, abrasives, or similar tools that will abrade the surface coating and leave scratches or other finish damage and lead to corrosion. Further, keep in mind that any misuse or abuse of any of the acceptable cleaning agents will automatically void any manufacturer’s warranty for the affected surfaces.

By using the tips above to properly cut and clean metal panels, installers can avoid the problems of corrosion, staining or other surface damage. Thus, the integrity and beauty of the finish is maintained without any impact on the warranty. To learn more about metal panel finishes, cutting, cleaning and warranties, contact your MBCI representative.

The Benefits of Integrating Daylighting Systems with Metal Panels

When metal roofing and wall systems of insulated metal panels, or IMPs, are combined with integrated daylighting and electrical lighting systems (such as with skylights, windows and translucent panels) it can improve occupant wellness and overall building performance. Are you curious if the return would be worth your investment? Uncover the recent advancements in daylighting technologies, the benefits and how to measure your building’s success.

Advancements in Daylighting Technologies and IMPs

In recent years, IMP assemblies have seen significant improvements, including more effective seals and thermal breaks as well as better thermal performance.

A range of novel daylighting products and technologies have been introduced in recent years that aid in the deployment of natural illumination for a multitude of occupancies—maximizing daylighting effectiveness while also maintaining the envelope’s barrier and thermal performance. These tools include pre-engineered, integrated metal envelope and roof solutions with compatible curbless skylights, light tubes, pan-type prismatic skylights, automated dimming controls for lighting, motorized shades and other components.

One example of how new tools are replacing more traditional products is the use of domed and pan-type units with prismatic embossing, which refracts and directs two to four times as much illumination into the indoor spaces when solar incidence angles are more acute, such as in the early morning and late in the day. These prismatic elements also help eliminate “hot spots” and reduce glare and ultraviolet (UV) deterioration from daylighting.

Daylighting with Metal Roofing

Benefits of Investing in Daylighting

Overall, using the current crop of novel skylight products in combination with a highly thermally efficient base system of metal panel walls and roofing will reduce excessive solar heat gain as they reduce the electrical base load for lighting. Highly diffusing acrylic and polycarbonate lenses and spectrally selective glass openings are very effective for maximizing functional visible light indoors while inhibiting unwanted heat gain. Many of the skylight aperture designs block 85% of infrared (IR) and 99.9% of UV light, which also reduces the unwanted degradation of products and materials inside the buildings. Additionally, the new generation of skylights also optimizes solar harvesting because many of the lenses have a minimal effect on VT.

In this way, the use of skylights with metal roofing and IMPs can be an effective way to meet the requirements of IECC 2012 and state energy codes. The skylights reduce overall electrical loads without adding unacceptable levels of solar heat gain, and their small relative area means the overall roof U-values remain low.

How to Measure the Success of Daylighting

Building teams will encounter a number of key variables that help measure the effectiveness of proposed daylighting designs. The most common (and valuable) daylighting performance metrics in use today include the following:

• Daylight factor
• Window-to-wall ratio, or WWR
• Effective aperture, or ea.
• Daylighting depth
• Solar heat-gain coefficient, or ShgC
• Haze factor
• U-factor

Using the above tools and terminology, building teams can better assess the benefits of daylighting strategies with skylights, prismatic pan-type products and solar light pipes, among others. In particular, these are important for meeting the widely used 2012 International Energy Conservation Codes (IECC) and ASHRAE 90.1 as well as state energy codes and “reach targets” such as green building certifications, the Passive House standard and others.

How to Learn More

The use of building systems combining metal roofing with skylights and integrated lighting provide significant life-cycle performance. Much of this is due to the research and development behind the individual products and materials used for these applications.

For a more in-depth look at daylighting within the context of metal roof and wall systems, please refer to MBCI’s whitepaper, Shining Light on Daylighting with Metal Roofs, which showcases the strong rates of return of using integrated daylighting systems with novel prismatic optics and high-efficiency lighting on metal envelopes with good thermal and barrier performance.

Download the White Paper, Daylighting with Metal Roofs

Find a sales representative