Texas Department of Insurance Windstorm Inspection Program

Are you involved with a building project along the Gulf Coast of Texas in which metal roofing or siding is involved? If so, obtaining a building permit may be subject to compliance with the Texas Department of Insurance (TDI) Windstorm Inspection Program. Here is some information that can help.

What is the TDI Windstorm Inspection Program?

In 1987, the Texas Legislature enacted HB 2012 with a requirement to mitigate losses to structures due to hurricanes along the Texas Gulf Coast. On January 1, 1988, the Texas Department of Insurance (TDI) began administrating the Windstorm Inspection Program in support of this legislation. The program is centered in Austin, with four other field offices also located along the Gulf Coast.

Where does the TDI Windstorm Inspection Program apply?

The Windstorm Inspection Program applies to all commercial and residential structures located primarily along the Gulf Coast of Texas. TDI has designated specific areas as catastrophe areas, also known as Texas’ First Tier Countries. The affected countries include Aransas, Brazoria, Calhoun, Cameron, Chambers, Galveston, Jefferson, Kenedy, Kleberg, Matagorda, Nueces, Refugio, San Patricio, Willacy and certain cities east of State Highway 146 in Harris County (La Porte, Morgan’s Point, Pasadena, Seabrook, Shoreacres).

Designated Catastrophe Areas
Designated Catastrophe Areas

What is the Texas Windstorm Insurance Association?

The designated catastrophe areas often use Texas Windstorm Insurance Association (TWIA) as the insurer of last resort for the wind and hail portion of their building insurance. To qualify for wind and hail insurance through TWIA, all new structures plus any alterations, additions, or repairs to existing structures (including re-roofs or roof repairs) located in the designated catastrophe areas must be constructed and inspected according to the building specifications adopted by TDI.

How are Building Permits Affected?

All building work needs to meet the requirements of the adopted building codes in Texas (currently the 2006 version of the International Building Code and the International Residential Code). However, in addition to the codes, the TDI requirements must also be complied with in the designated countries. This is similar to other parts of the country that experience severe weather events (e.g., Dade County, Florida) where additional requirements above the code have been instituted for safety reasons. At the time of building permit application, evidence will need to be shown of TDI compliance in design documents; therefore, many times the local TDI office is contracted first and an application is submitted (Form WPI-1). Then, during construction, a TDI certified inspector (usually an engineer) will inspect the work, as will the regular building inspectors. Compliance will need to be shown with the TDI requirements (Form WPI-8) in order to obtain final sign off and a Certificate of Occupancy.

What Building Products are Approved for Use?

In order to be compliant with TDI standards, building products must be independently tested and shown to be able to withstand different levels of severe weather. For products like metal roofing and siding, the testing needs to include the method of attachment and the substrate type (metal, wood, etc.). Product evaluations are available by product type (such as “Exterior Coverings” for metal siding or “Roof Coverings” for metal roofing) and then by manufacturer all by either contacting a local TDI field office or on TDI’s website: www.texas.gov/wind/prod/index

For more information on this program visit http://www.tdi.texas.gov/wind/index.html or email [email protected]. To find out more about metal roofing and siding products that meet the severe weather requirements, contact your local MBCI representative.

 

Fire Resistance for Insulated Metal Panels

When it comes to understanding fire ratings for wall panels on buildings, one of the first things to overcome is incorrect information or misunderstanding that sometimes emerges around this topic. In an effort to achieve some greater clarity, let’s look at some of the basics of fire resistance ratings, particularly for insulated metal panels (IMPs).

Building Code Requirements

The fundamental reason that any wall needs to provide some degree of fire resistance is to allow people enough time to safely evacuate from a space or building in the event of a fire, or to prevent the spread of fire between defined areas or whole structures. Building and fire codes have been developed and adopted, in part, specifically to define the situations, building types, conditions and circumstances where different degrees of fire resistance are required to protect the public health, safety and welfare. Therefore, when looking at a specific building and the fire resistance ratings required, the applicable codes must be consulted and the proper determination made regarding the minimum fire resistance requirements for the different exterior and interior walls of that building.

Ratings-Based on Testing

The established means for knowing whether or not a wall meets a particular fire resistance rating is based on conducting a fire test in an independent laboratory. For IMPs, that means a manufacturer needs to submit full-size product samples to a laboratory such as Underwriter’s Laboratories (UL), which will then prepare and carry out the test according to standard, agreed-upon procedures such as ANSI/UL 263, “Standard for Fire Tests of Building Construction and Materials.” The procedures dictated by a standard such as this are intended to be the same for all similarly tested materials or products to determine the actual fire resistance rating for each. When the products are subjected to the prescribed heat and flame under uniform laboratory conditions, then they can be classified based on how well they performed. Some products, for example, may survive the test long enough to qualify for a 1- or 2-hour rating, while others may only qualify for a 30-minute rating before succumbing to the fire.

Urology Medical Office Building MBCI
The Urology Medical Office Building in Virginia Beach, Virginia utilizes 7.2 Insul-Rib® and CF Architectural – Horizontal insulated metal panels. View the product data sheets for these products for information on their fire resistance ratings.

Selecting Products

In creating or renovating a building, then, it is incumbent on the design and construction team to choose products and materials that have a proven, tested fire rating that meets or exceeds the building code requirements for the particular building at hand. If a manufacturer of IMPs has been identified ahead of time, then it may be possible to ask for evidence of the UL or similar test to prove that the selected product or assembly meets the code requirements. But many times, there is a need to first determine the requirements, and then look for the available products and manufacturers who can provide the needed fire resistance. Fortunately, UL maintains an online directory of all of the products that they have tested and certified. Their online certifications directory allows users to input selected criteria to search for specific result reports. Using this resource for IMPs, the UL Category Code of BXUV and the UL File Number of U050 should be entered to do a search. This will yield a summary list referencing the ANSU/UL263 test with a link to the BXUV.U050 test report for IMPs. There you will see under item 2: “Metal faced panels, nominal 42 in. wide by nominal 4 in. thick (for the 1 Hour Rating) nominal 7 in. thick (for the 2 Hour Rating) or nominal 8 in. thick (for the 3 hour rating) installed vertically or horizontally. Panels supplied factory double tongue and grove joint.” This lets the design and construction know that 1-, 2-, or 3-hour ratings are available depending on the thickness of the IMP and given that the factory joint is provided. Hence, the manufacturer can label their products accordingly.

By specifying and selecting the proper products that have been correctly tested and certified, then building code compliance is not only streamlined, the building will meet the inherent fire and safety requirements for the people who will occupy it.

For fire resistance information on MBCI panels, please review the product data sheets.

Part III – Transparency Plus Consensus: A Win-Win for Everyone

Part III transparency plus consensusIt has been a long time since my last blog on this subject. This is not only because I’ve been busy but also because the landscape of green building programs in general has changed significantly since Part II, and I wanted to wait to see how things shook out before I wrote something that might be immediately outdated. If you remember, we left off in Part II talking about how LEED, the most popular green building program in the US, has not been developed through an ANSI accredited consensus process. Furthermore, the resulting lack of transparency was dubiously ironic given that LEED demands a high level of transparency from building product manufacturers min the latest version of their program, LEED v4.

We also discussed the related but more general movement for manufacturers to fully disclose all of the ingredients in their products to a third party who then compares that list to lists of known hazardous substances and disclose any matches on a product label or public disclosure for all to see. This movement has been fueled by several large architecture firms sending letters to building product manufacturers threatening to stop specifying their products unless they participate. Although most manufactures agree that there is merit to disclosure and are anxious to participate in a fair program, they have not been privy to discussions regarding the logistics of such a program nor have they been allowed to participate in any kind of a standard development governing the disclosure process. This makes manufacturers reluctant to participate, given their vulnerability in such a situation. This risk is leveraged by the fact that currently the only standards that dictate the rules of such a program are under the control of consortiums who have little to no scientific expertise and, frankly, have not been friendly to the building products industry in the past.

I also mentioned that there are alternative programs to LEED that have been developed through a valid consensus process. Specifically, the International Green Construction Code (IgCC), ASHRAE 189.1 and Green Building Assessment Protocol for Commercial Buildings (also known as Green Globes) are ANSI standards that outline the relevant requirements for anyone to view. However, the USGBC marketing machine and resulting popularity of LEED prevented wide use of these standards. Thus, they remained largely unutilized. That is until this year, when the USGBC, IgCC and ASHRAE signed a Memorandum of Understanding, promising to work together and create a favorable consensus by eliminating duplication of provisions and assigning an area of responsibility for each group to maintain separately.

Although no documents have yet to be created, it appears that the administration and enforcement provisions of the new standard will come from the IgCC, and the technical content will come from ASHRAE 189.1, both of which are consensus based. Meanwhile, LEED will require compliance with 189.1 as a prerequisite to an upcoming interim version of LEED. This approach allows an Authority Having Jurisdiction (AHJ) to adopt the IgCC as a minimum standard of construction; dropping any reference to LEED they might currently have as minimum project requirements for all buildings. This leaves LEED to evolve as a completely voluntary program going forward and push the envelope of green building, which is their core mission. Meanwhile, Green Globes remains ANSI accredited and still exists as a commercial competitor to LEED. This environment should result in a more user friendly application process, the lack of which been a ubiquitous criticism of LEED for years, because Green Globes is much more user-oriented.

So, it appears that the most popular green building programs are poised to move in the
direction of a true consensus, which is fantastic news for everyone involved. However, the creation and development of disclosure programs, which will not be in the initial technical requirements provided by ASHRAE 189.1, remains largely a one-sided affair with no seat for manufacturers at the table. Besides the contentious nature of the subject in general, there are major philosophical questions that have to be addressed before Health Product Declarations (HPDs), or any type of disclosure in general, can be brought into the main stream. That subject is beyond the scope of this blog, but I encourage you to read a very good article on the trappings of HPDs called “Disclosure: The Newest Dimension of Green Building” by Jim Hoff.

The good news is that there may be a viable alternative to HPDs on the horizon. ASTM has a current open work item to develop a true consensus based standard guiding the issuance of a Product Transparency Declaration (PTD), which has much the same intent as an HPD. As discussed in Part I, the development of ASTM standards is a highly transparent process that allows everyone, including manufacturers, to come to the table. I encourage every designer to join ASTM and get involved in this process, especially those firms who participated in the letter writing campaign, and forgo HPDs until PTDs are available.

Yes, it will take a little longer; the reality that the development of consensus based standards takes time. But just like the development of the laws that govern this country, there is far too much risk involved in getting it wrong. Instead, having these standards developed by a consensus-based process is the only way the finished product will be truly useful and meaningful.

Code Requirements for Cool Roofs with Climate Zone Specifics

There is still a lot of discussion—some agreeable and some not so agreeable—about the necessary color of our rooftops.  One side of the discussion revolves around keeping the surfaces of our built environment “cool,” so there’s a movement to make all rooftops “cool” by making them white, or at least light-colored.  Those on the other side of the discussion claim that cool roofs are necessary to reduce a building’s energy use.  Cool roofs can be a really good idea, but let’s not mix up the reasons why cool roofs matter—are we cooling the urban areas (that is, reducing urban heat islands), or are we saving energy costs for individual buildings? Cool Roofs
h
The average building height in the United States is less than two stories, but “white roofs” are mostly desired in dense, urban areas…and how many buildings here are less than two stories?  Tall buildings are typically found in dense, urban areas, with shorter buildings dominating the fringe urban areas.  In the suburbs and rural areas, one- and two-story buildings are more the norm.  So we have a mix of building heights in the United States, but the conflict is that the “cool roof” focus is often where the tallest buildings exist.

And unfortunately, a cool roof on a 20-story building isn’t going to reduce its energy use, especially if the code-required amount of insulation exists on that roof.  Rather, reducing energy use of a 20-story building hinges on the energy efficiency of the 20-story-tall walls—R-value of walls, percentage of windows, and solar blocking eaves, just to name a few items.  Conversely, the energy efficiency of a one-story big-box store comes down to its roof.  And for these buildings, roof color definitely can make a difference.  However, our building codes don’t differentiate based on building proportions, but only on geographic location—and that’s problematic.  But as designers, we can improve on the code requirements.

The 2015 International Energy Conservation Code provides specific information about cool roofs, which are required to be installed in Climate Zones 1, 2, and 3 on low-slope roofs (<2:12) directly above cooled conditioned spaces.  There are two ways to prescriptively comply with this requirement: use roofs that have a 3-year-aged solar reflectance of 0.55 and a 3-year-aged emittance of 0.75.   Notice that initial (i.e., new) reflectance and emittance are not specified; long-term values are more important.  The second method to comply is to have a 3-year aged solar reflectance index (SRI) of 64.  SRI is a calculated value based on reflectivity and emittance.  It’s important to understand why a cool roof is desired and to make appropriate design decisions.

To locate metal roof products that meet the IECC requirements, go to http://coolroofs.org/products/results and use the search function to narrow your results or view our finishes’ SRI ratings on our Cool Metal Roofing page.

Reroofing and the Building Code

Reroofing is and always will be the predominant project type in the roofing industry.  Roughly 70-90% of all roofing projects (depending on the year) are performed on existing buildings.  Understanding the reroofing requirements in the building code is critical to proper design and construction.  And fortunately, the reroofing requirements are not all that complicated.International Building Code

The 2015 International Building Code, Section 1511, Reroofing provides the building code requirements when reroofing.  Reroofing projects are divided into two types: recovering and replacement (which includes full removal of the existing roof).

Metal panel reroofing projects must meet the same fire, wind, and impact requirements for roof systems for new construction; however, they do not need to meet the minimum slope requirements (¼:12 for standing seam; ½:12 for lapped, nonsoldered and sealed seams; 3:12 for lapped, nonsoldered, non-sealed seams) if there is positive drainage.  Also, reroofing projects do not need to meet the secondary drainage requirements (i.e., installation of emergency overflow systems is not required).

The requirements for metal panel and metal shingle roof coverings are in Section 1507.4, Metal roof panels and Section 1507.5, Metal roof shingles of the 2015 IBC.  These apply for new construction and reroofing, and include information about decks, deck slope, materials, attachment, underlayment and high wind, ice barriers, and flashing.  The 2012 IBC has the same requirements; the 2015 IBC added new language about deck slope and attachment requirements for metal roof panels.  Nothing was changed for metal roof shingles.

In general, recovering is only allowed if there is one existing roof in place, except if a recover metal panel roof system transmits loads directly to the structural system (bypassing the existing roof system).  This provides a great advantage for metal panel roofs!  The existing roofs do not need to be removed, but new supports need to be attached through the existing roof (typically a metal panel roof) directly into existing purlins.

If metal panels or metal shingles are installed over a wood shake roof, creating a combustible concealed space, a layer of gypsum, mineral fiber, glass fiber, or other approved material is required to be installed between the wood roof and the recover metal roof system.

Good roofing practice is codified in the reroofing section of the IBC; contractors who design and install a recover or replacement metal roof are legally required to follow locally adopted code requirements.  And, of course, all metal roofs must be installed according to the manufacturer’s approved instructions.

Air Barriers and Vapor Retarders

Air Barrier Vapor Retarders

Building design and code requirements are readily becoming rooted in building science, which is the study of heat, air, and moisture movement across the building envelope.

Reducing the heat energy transfer (which is bi-directional based on geography and climate) is why insulation is used.  And arguably more important is the need to reduce airflow (aka, air leakage) across and through building envelopes.  This airflow often includes a lot of heat and moisture; therefore, buildings’ HVAC systems work hard (and use energy…and cost money) to make up for the heat and moisture gains and losses in order to maintain proper interior temperature and humidity levels.  Environmental Building News, in an article titled The Hidden Science of High-Performance Building Assemblies (Nov. 2012) , stated “Air infiltration and exfiltration make up 25%-40% of total heat loss in a building in a cold climate and 10%-15% of total heat gain in a hot climate.”  This is why the model codes are now mandating air barriers.

The 2012 International Energy Conservation Code (IECC), Section C402.4, Air leakage (Mandatory) provides the requirements for air barriers in new construction.  Prior to 2012, building codes did not include air barrier requirements.  The first step taken in the IECC was to mandate air barriers in Climate zones 4, 5, 6, 7, and 8 (locations north of the Mason-Dixon Line, in a broad sense).  Climate zones 4 through 8 are heating climates, where the largest potential for heat loss occurs.   The IECC provides three ways to comply; air barriers requirements can be met through material, assembly, or whole building testing.  A blower door test, used to test a whole building, seems to be the most common way used to show code compliance currently.  The IECC included a list of materials that prescriptively meet the code requirements for air barrier materials; sheet steel and aluminum are on that list.

Three years later the 2015 IECC went a step further.  Section C402.5, Air leakage—thermal envelope (Mandatory) extended the requirement for air barriers by mandating their use in all climate zones in the United States except zone 2B, which is a hot/dry zone.  Climate zone 2-dry includes only southwest Arizona, southwest Texas, and a small part of Southern California.  Essentially all new buildings in the United States are required to have air barriers, and sheet steel and aluminum remain prescriptive air barriers.  It’s important to know that when reroofing, the air barrier requirements do not apply.

The IECC is available for purchase on ICC’s website:  www.iccsafe.org.

Part II – Transparency in Building Products

Transparency in Building Products

A huge buzzword in the building products industry these days is transparency.  The green building movement, which has previously focused on high-performing buildings with a strong emphasis on energy efficiency and fossil fuel use reduction, has increasingly put its cross hairs on occupant exposure risk in the last few years.  Although that change alone is probably enough to start some controversy, how this new emphasis is being implemented is really fueling the fire for new arguments.  If you read our last blog, Part I – The importance of consensus in building standards,  then you should be familiar with how building codes are developed in a consensus-based forum in which all affected parties have some say.  However, many of the movers and shakers of the green building movement have bypassed that forum by folding the requirements they want to emphasize into voluntary programs of their own creation.  At the same time, they lobby owners and building officials to carry some level of compliance to these programs, offering a benefit of being able to say their buildings or communities are “green” by displaying plaques on the façade or being listed on a website.

Although that tact seems fair on the surface, it really puts a lot of power into the hands of self-proclaimed experts to decide on the definition of “green” they want to use for their program. As we discussed in Part I, the ANSI consensus process requires policy-making organizations to transparently prove their competence in subjects they affect with their policy.  Furthermore, they also have to publicly announce the formation of a committee (called a “Call for Committee”) they designate to create and maintain this policy.  They must also allow members of the public to submit curricula vitae for consideration to join the committee without necessarily being a member of the organization.  This introduces a mechanism to balance the power the committee is usurping by having control of the policy going forward.  Unfortunately, no such mechanism exists for many of the authors of voluntary green building programs and the negative aspects of this are particularly pronounced in the area of building product transparency.

One of the most common ways green building programs administer transparency is through the use of a “red list,” which is essentially a list of banned substances.  Using California Proposition 65 or Europe’s RoHS as a model, many of the NGO-based programs related to buildings have some type of requirement that aims to reduce or eliminate the use of ingredients that could possibly be harmful to building occupants.  In many instances, these same NGOs offer third-party listing programs that a building manufacturer can join and have their products declared as meeting the requirements.  Many people see this as a conflict of interest since an NGO, typically funded through donations, is in a position to act as a gatekeeper, allowing in only those companies or industries that support the NGO financially or align themselves with the NGO’s agenda.

But there is a deeper, more disturbing aspect:  Although the list itself may start out as a publicly accepted and scientifically based enumeration of toxic ingredients, NGOs often add other substances that are not known, or in some cases, even suspected, to be toxic in order to dissuade architects from specifying certain products or deploying certain construction methods.  Quite often, the NGO will develop the red list in closed discussion forums where manufacturers have no ability to provide evidence to substantiate that their products are indeed safe.  At best, a manufacturer can ask the NGO to consider exceptions or modifications.  But ultimately, a manufacturer has no assurance that their case has been adequately considered because they are not allowed to attend the forum.  Sadly, this is what passes for transparency in green construction more often than not lately.

This lack of due process came to a head in 2013, when members of congress began to express concern that LEED, the green building program used by the military and the General Services Administration, was not an ANSI-based standard.  In response, the GSA formally announced that they would take public comment on the subject and decided nine months later that they would continue to specify LEED but other ANSI-based programs would be considered going forward as well.  Meanwhile, the military announced that they were developing their own standard, distancing themselves from LEED.  This quelled the discussion for a while and allowed other, even hotter subjects like healthcare to take the spotlight.  But concern lives on that the lack of transparency in the development of LEED and similar programs is leading the public down a dangerous, politics-as-usual road.

However, the news is not all bad.  There are several organizations that use an ANSI-based process to develop and maintain their programs so that the requirements can readily be incorporated into public policy.  ASHRAE, ICC, and a newcomer in the U.S., The Green Building Initiative, have all invested the tremendous amount of time and effort it takes to develop their standards in an ANSI-based public forum, and their respective programs offer a building owner or code official a great alternative to vague voluntary programs subject to interpretation by self-proclaimed experts.  We will explore several of those options in our next blog.

Metal Roofs & Walls a Big Plus When It Comes to Net Zero Energy

Kickapoo Tribe Government & Community Building
Kickapoo Tribe Government & Community Building features MBCI’s CF Architectural Insulated Metal Panel

Are you familiar with “Net Zero Energy?” No, it’s not that sense of power you got from using that early dial-up Internet browser of the 1990’s (The company, by the way, is still in existence, and comes up in searches for the term Net Zero. Who knew?). The Net Zero Energy I’m speaking of is the enviable, sustainable state achieved when the creation and use of energy within the same building system are equal.

Though achievable, the cost and capacity for producing energy within a building system is greater than that of creating energy efficiency in one. The good news is that metal roofing and ,a href=”http://www.mbci.com/products/wall-products/”>wall panels are extremely useful on both sides of the equation.

On the energy efficiency side, insulated metal panels (IMPs) provide roof and wall systems with the thermal and radiative performance needed for sustainable design. Insulated wall and roof panels provide continuous insulation and eliminate thermal bridges. As building and energy codes become increasingly more stringent, insulated metal panels are an ideal choice for thermally efficient building envelopes.

Baker Hughes features MBCI’s CF Mesa Insulated Metal Panels

On the other side of the equation, a common method of generating energy is through the use of photovoltaics (PVs), and metal roofs provide the best possible surface to host a photovoltaic (PV) array. Solar photovoltaic systems and solar water heating systems can be installed on a metal roof, penetration-free, resulting in high performance with minimal risk. Both the use of IMPs and the installation of PVs on metal roofs can be used with proper designs to maximize building energy efficiency.

Of course, metal roofing, known to last 40 years or longer, is the only type of roof that can be expected to outlive the PV system mounted on it, which results in virtually zero maintenance and a very low in-place cost for the roof and PV system together.  A sustainability win, a durability win, and, of course, an aesthetic win.  The result is anything but a zero sum game.

Find out more about MBCI’s Insulated Metal Panels

Find a sales representative